APPENDIX 8 LOCAL WATER MANAGEMENT STRATEGY

MUNDIJONG PRECINCT E2 Local Water Management Strategy

Peet Limited Rev B - February 2013

306 Murray Street, Perth Western Australia 6000 PO Box 7085, Cloisters Square Western Australia 6904 t +61 (0)8 9204 0700 f +61 (0)8 9244 7311 e enquiries@waveinternational.com

www.waveinternational.com

Project Brief

Job Number	2681
Project	Mundijong Precinct E2 Local Water Management Strategy
Client	Peet Limited
Client Contact	Clay Thomas
Client Address	Level 7, 200 St Georges Terrace Perth, WA 6000

Document Status

Rev	Date	Description	Ву	Signed
А	October 2012	Mundijong Precinct E2 - LWMS	KW	
В	February 2013	Amended following SJ / DoW review	KW	

DISCLAIMER

This document has been produced on behalf of, and for the exclusive use of the nominated recipient, and is issued for the purposes of the proposed works only. Wave International accepts no responsibility or liability whatsoever in respect to use of this document by any third party.

The information contained within the document is confidential and subject to copyright.

This document shall not be copied, transmitted or divulged to other parties without the prior written consent of Wave International's duly authorised representative.

TABLE OF CONTENTS

1	INT	RODUCTION1
	1.1	Background1
	1.2	Proposed development1
	1.3	Design principles and objectives2
2	PRE	-DEVELOPMENT ENVIRONMENT
	2.1	Topography7
	2.2	Geotechnical conditions and acid sulfate soils7
	2.3	Wetlands and Bush Forever sites7
	2.4	Groundwater7
		2.4.1 Pre-development groundwater levels
		2.4.2 Pre-development groundwater quality
	2.5	Surface water
		2.5.1 Pre-development surface water modelling
3	WA	TER CONSERVATION13
	3.1	Potable water supply
		3.1.1 Water efficient appliances
	3.2	Non-potable water supply
4	GRC	OUNDWATER MANAGEMENT
	4.1	Groundwater levels & subsoil drainage 15
		4.1.1 Subsoil drainage network
	4.2	Groundwater quality
5	SUR	FACE WATER MANAGEMENT
	5.1	Stormwater modelling
		5.1.1 Local drainage management
		5.1.2 Major flood management
	5.2	Surface water quality
	5.3	Wetlands & waterways 19
6	MON	NITORING AND IMPLEMENTATION
	6.1	Monitoring program
	6.2	Implementation
	6.3	Matters to be addressed in future UWMPs
	6.3	Matters to be addressed in future UWMPs

7		-	
	REFERENCES	1	ί.
1		-	<u> </u>

LIST OF TABLES

Table 1.1 - DWMS design objectives	2
Table 2.1 - Average pre-development water quality	
Table 2.2 - Peak pre-development runoff rates	11
Table 2.3 - Allowable flow rates from Precinct E2	12
Table 6.1 - Monitoring program	20

LIST OF APPENDICES

- Appendix A Geotechnical bore logs
- Appendix B Pre-development groundwater monitoring data
- Appendix C Water consumption estimates
- Appendix D Stormwater modelling parameters & results

LIST OF FIGURES

- Figure 1.1 Site locality plan
- Figure 1.2 Local structure plan layout
- Figure 2.1 Existing contours & aerial photo
- Figure 2.2 Geotechnical test pit locations & clay contours
- Figure 2.3 Depth to clay layer
- Figure 2.4 DEC wetland mapping
- Figure 2.5 Groundwater monitoring bore locations & pre-development winter perched water levels
- Figure 2.6 Depth to pre-development winter perched water levels
- Figure 2.7 Pre-development surface water flow paths
- Figure 5.1 Post-development drainage management
- Figure 5.2 Drainage swale flood depths & widths

1 INTRODUCTION

1.1 Background

Peet Limited has engaged Wave International to prepare a local water management strategy (LWMS) for a 55ha landholding within the Mundijong/Whitby District Structure Plan area. The site is approximately 40km south-east of the Perth CBD, and 2km south/west of the Mundijong Town Centre.

The Mundijong/Whitby District Structure Plan (DSP) was adopted by the Shire of Serpentine Jarrahdale (SJ Shire) in August 2011 to control the development of over 1400ha of mostly rural land within the SJ Shire for urban development.

This LWMS will address water management issues over the proposed local structure plan (LSP) area, which forms subprecinct E2 of the Mundijong/Whitby DSP area. The LSP area (the site) covers Lot 50 Cockram St and Lot 119 Sparkman Road, and is expected to yield approximately 500 residential lots and a primary school when fully developed. The site is located on Mundijong Road, and is bounded by Mundijong Road, Adams Road, Sparkman Road and the future Tonkin Highway reserve. The location of the site in relation to surrounding areas is shown in Figure 1.1, while the proposed LSP layout is included as Figure 1.2.

The site has historically been used for stock grazing and is almost entirely cleared, with natural surface levels falling from east to west across the site at a grade of approximately 0.8%. Existing ground levels range from 30mAHD along the eastern boundary to 26mAHD in the west, and soil conditions generally comprise sand of varying depths overlying the clays of the Guildford formation.

Lot 50 Cockram Street falls within the area covered by the Mundijong Whitby DSP District Water Management Strategy (DWMS), which was prepared by GHD in 2010. The DWMS addresses broad-scale stormwater management measures over an 1800ha area which extends from the future Tonkin Highway reserve to South Western Highway.

The DWMS identified two drainage flow paths which cross the site from east to west, although both are very shallow and not well-defined. These drainage paths convey flow from a small catchment to the east of Precinct E2 across the site towards a drainage reserve immediately west of the future Tonkin Highway reserve. Section 2.5 details the predevelopment surface water conditions across the LSP area.

1.2 Proposed development

The Mundijong/Whitby DSP was produced to guide urban development over previously rural land across Mundijong & Whitby, which was broken down into seven precincts (Precincts A-G). An amendment to the DSP in April 2012 further delineated two of the precincts (E & G) into sub-precincts (E1, E2 and G1, G2). An LSP has been prepared to address the proposed development of Sub-precinct E2, and this LWMS is a key supporting document of the LSP.

The development of the LSP area is expected to yield approximately 500 residential lots, with a primary school and associated sporting oval on the eastern side of the site.

1.3 Design principles and objectives

The DWMS set out several design principles and objectives for water conservation, stormwater management and groundwater management within the Mundijong/Whitby DSP area. These design objectives and criteria are summarised in the table below:

Table 1.1 - DWMS design objectives

Category	Design objectives	Strategies	Design criteria
Protection of environmental assets	 Minimise changes to hydrology to prevent impacts on watercourses & wetlands Manage & restore watercourses & wetlands Assess & manage impacts on native flora & fauna Assess & manage impacts on sites of indigenous significance 		
Urban water use	• Ensure the efficient use of all water resources in the newly-developing urban form & aim to achieve highest value use for fit-for-purpose water.	 Potable water: Adopt drinking water targets. Use only water efficient fixtures & fittings. 	 Consumption target of 100 kL/person/year (40-60 kL/person/year of scheme water). Meet 5-star Plus provisions for all new dwellings. Promote the use of native plants. All parts of POS except turfed areas are to contain only native plants. Alternative non-local plants may be considered where passive solar exposure is required.
	• Maintain opportunities for future generations by using water more	• Ensure that landscaping & irrigation use water	 The use on on-site rainwater tanks is to be promoted to achieve water

Category	Design objectives	Strategies	Design criteria
	efficiently. This is best achieved by combining several approaches such as raising community awareness, regulation, market mechanisms to facilitate recognition of the true value of water and financial incentives/ assistance to facilitate change.	 efficiently. Fit-for-purpose water: Ensure that non-potable water supply systems deliver a net benefit to the community. Ensure that non-potable water supply systems are designed as part of an integrated water supply. 	consumption targets whilst also having the ability to fully or partially meet on-site retention requirements.
Stormwater management	 Protection of wetlands & waterways from the impacts of urban runoff. Protection of infrastructure and assets from flooding and inundation. 	 Minimise changes in hydrology to prevent impacts on receiving environments: 1yr1hr ARI post- development discharge volume and peak flow rates shall be maintained relative to pre- development conditions at subcatchment outlets. Where there are identified impacts on significant ecosystems, maintain or restore desirable environmental flows and/or hydrological cycles 	 Retain 1yr 1hr ARI event at-source via soakage or storage devices. Post-development critical 1yr peak flow and volume & 100yr ARI peak flow to be consistent with pre-development flows at the discharge point from all subdivisions, at discharge points from each structure plan & at discharge points from each subcatchment. Flows from developed areas to be attenuated via flood detention storage areas incorporated into POS and located outside defined floodways. Post-development flows for all ARI events to be discharged at flow rates which are consistent with pre-development flow rates for those same events. Floodways shown in DWMS Figure A11 are not to be developed or obstructed in any way.

Category	Design objectives	Strategies	Design criteria
		 as approved by the DoW. Implement BMPs that promote on-site retention of events up to 1yr 1hr ARI. Manage surface water flows from major events to protect infrastructure an assets. Uphold environmental values of downstream waterways within and surrounding the study area. 	 Development outside the floodway should ensure finished flood levels are a minimum of 0.5m above the 100yr ARI flood level in streamlines and basins, and 0.3m above the 100yr ARI flood level for other drainage paths (eg road reserves). Existing cross-sectional areas of waterways to be maintained. POS and retention basins should operate as dry basins with minimum 0.3m separation between invert and CGL. Defined major arterial roads to remain passable in the 100yr ARI storm event. Minor roads to remain passable in the 5yr ARI event Emergency evacuation areas to be at least 2m above 100yr ARI flood level. Water quality treatment systems and WSUD structures to be designed in accordance with the Stormwater Management Manual and Australian Runoff Quality.
Surface water quality	 Uphold environmental values of downstream waterways within and surrounding the study area. 		 Non-structural measures to reduce applied nutrient loads. On-site retention of 1yr 1hr ARI event. Use of bioretention structures.
			 The following water quality targets are to be achieved as compared to a development that does not actively manage water quality: 80% reduction in TSS

Category	Design objectives	Strategies	Design criteria
			 60% reduction in TP 45% reduction in TN 70% reduction in gross pollutants. If no water quality modelling is done, the following are to be achieved: Retain 1yr 1hr ARI event from connected impervious areas at-source. Maintain critical pre-development 1yr ARI peak flows and volumes. Size bioretention systems to be 2% of connected impervious area. Soil amendment should include a 300mm deep layer of material to reduce nutrient export (PRI>10) across at least 10% of the site including all landscaped POS and drainage structures. Swales and bioretention/infiltration systems to have sufficient clearance from groundwater to ensure that they do not remain permanently wet.
Groundwater management	 Protect infrastructure & assets from flooding by high seasonal groundwater levels, perching and/or soil moisture. Protection of groundwater dependent ecosystems from the impacts of urban runoff. 	 Manage groundwater levels to protect infrastructure & assets. Maintain groundwater regimes for the protection of groundwater dependent ecosystems. 	 Where a perched water table exists or the predicted maximum groundwater level is within 1.2m of natural surface, clean fill and/or subsoil drainage is required to ensure adequate separation to finished levels. Subsoil drains to be installed at or above approved CGL. Bioretention system & drainage inverts to be at or above approved CGL, although existing inverts below this level may remain.

Category	Design objectives	Strategies	Design criteria
	 Managing & minimising changes in groundwater level & groundwater quality following development/redevelopment. 	 Manage the shallow aquifer to protect the value of groundwater resources. 	 Subsoil drains to be at or above CGL. Subsoil drains to have free-draining outlets. Finished lot levels to be at least 0.8m above the phreatic line (ie the mounding between parallel subsoil drains). Clean fill imported on the site for WSUD elements is to incorporate a band of material that will reduce phosphorous export via soil leaching, whilst also meeting soil permeability & soil compaction criteria specified by the local government authority. Where development is associated with any new or existing waterway or open drain that intersects the shallow water table, and that may discharge pollutants from the shallow groundwater to receiving environments, the following interim targets will be adopted (as compared to a site that does not actively manage water quality): 60% reduction in TP 45% reduction in TN.

6

2 PRE-DEVELOPMENT ENVIRONMENT

The subject area is 55ha in area and is well located, at the intersection of Mundijong Road and the future Tonkin Highway extension. The following sections include information on existing (pre-development) site conditions and summaries of the various studies and site investigations that have been completed to support this LWMS and LSP.

The site is almost entirely cleared, except for a few scattered trees and an area of vegetation in the north-western corner of the site. A house and farm buildings are located on Lot 119, in the north-eastern corner of the precinct. Figure 2.1 shows a recent aerial photo of the LSP site and surrounding area.

2.1 Topography

The site is relatively flat, sloping at a grade of approximately 0.5% from east to west. Levels fall from 30mAHD along the eastern end of the site to 26mAHD along the site's western boundary. Existing surface contours are shown in Figure 2.1.

2.2 Geotechnical conditions and acid sulfate soils

A geotechnical site investigation was carried out by Galt Geotechnics in 2011, which found that soil conditions across the site generally comprised Clayey Sand (SC), Sand (SP) and Ferricrete Gravel (GC). The site stratigraphy is quite variable both laterally and vertically. The average depth of the sand layer is 0.9m at the north-western region of the study area, increasing to 1.8m in the southern boundary of the study area. Figure 2.2 shows the test pit locations and contours of the underlying clay levels, while Figure 2.3 shows the depth from natural surface to the underlying clays. A copy of the bore logs from the geotechnical investigation is included as Appendix A.

A review of the Department of Environment & Conservation's (DEC) risk mapping for acid sulfate soils (ASS) showed that the entire site is classified as "Class 2 - Moderate to low risk of ASS occurring within 3m of natural surface". According to the Galt Geotechnics report, there is low likelihood of actual ASS or potential ASS at the site, based on the field testing that was carried out during the geotechnical investigation.

2.3 Wetlands and Bush Forever sites

The majority of the site is classified as a Multiple Use Wetland (MUW) under the Department of Environment & Conservation's Geomorphic Wetland mapping dataset (UFI 15785 - Palusplain Multiple Use). The Mundijong Road reserve along the southern boundary is classified as a Conservation Category Wetland (CCW) (UFI 14817 - Palusplain Conservation) and a Bush Forever site (Bush Forever site 360). Wetland mapping for the LSP area is included in Figure 2.4.

2.4 Groundwater

Groundwater flows from east to west across the region, generally following the topography. The Perth Groundwater Atlas (DoW, online) shows a snapshot of groundwater levels as measured in May 2003 (which are an indication of low groundwater levels); showing groundwater levels at the site ranging from 27mAHD in the east to 23mAHD in the west.

2.4.1 Pre-development groundwater levels

Site-specific groundwater monitoring was carried out by Brown Geotechnical & Environmental and Emerson Stewart between September 2008 and August 2011 to gain an understanding of pre-development groundwater levels and water quality across the LSP area. The monitoring showed that groundwater levels were at their highest in September 2009, when depth to groundwater ranged from at-surface to 700mm below natural surface.

Groundwater across this area tends to perch on the underlying clayey soils, causing large fluctuations of up to 2.5m between high and low groundwater levels. In areas of the site where the depth to the underlying clay materials is low, typical peak groundwater levels are very shallow (within 100mm of existing surface). Parts of the site with a greater depth of sand over the underlying clays have a slightly larger natural separation between existing surface and peak groundwater levels (up to 800mm).

A comparison of the pre-development monitoring data to nearby long-term DoW monitoring bores showed that the maximum groundwater levels measured in September 2009 were close to the long-term (25-year) average maximum levels. Using the long-term DoW data, the site groundwater levels have been calibrated to estimate a typical winter perched water level (refer Appendix B). Figure 2.5 shows the groundwater monitoring bore locations and the pre-development perched water level contours, and Figure 2.6 shows the depth from natural surface to typical winter water levels.

A combination of fill and subsoil drainage will be required in the areas where groundwater is close to the natural surface - Section 4 contains details of how groundwater will be managed across the proposed development.

DWMS groundwater modelling

The Mundjiong Whitby DWMS (GHD, 2010) included details of groundwater modelling completed over the entire district structure plan area. Figure A.8 of the DWMS shows that GHD's estimated groundwater levels fall from 32-33mAHD at the eastern edge of Precinct E2 to 27mAHD at the western edge of Precinct E2. These modelled levels are several metres above existing surface level, and are not considered to be an accurate representation of actual groundwater behaviour at this site.

The groundwater design criteria outlined in this LWMS has been determined for Precinct E2 based on the site-specific groundwater monitoring data described above.

2.4.2 Pre-development groundwater quality

Groundwater quality monitoring at the site was assessed on a quarterly basis by Brown Geotechnical & Environmental and Emerson Stewart between September 2008 and August 2011 using 6 bores distributed across the study site. Bore locations are shown in Figure 2.5. Samples were analysed for physical parameters and nutrients. A summary of average groundwater quality results is shown in Table 2.1 below.

	pH (Field)	EC (field) uS/cm	Dissolved Oxygen mg/L	Phosphorus mg/L	Total Nitrogen mg/L	Ammonium mg/L	Iron mg/L
Guideline values	6.5 - 8	1200 - 3000		0.07	1.2	0.08	
MB01	5.7	741	0.9	0.69	3.71	0.14	20.8
MB02	5.9	642	0.6	0.29	1.56	0.12	7.1
MB03	6.1	1697	0.8	0.34	2.10	0.43	45.1
MB04	6.3	8657	0.8	0.03	9.84	0.62	8.3
MB05	6.5	876	1.0	0.03	11.91	0.28	6.4
MB06	6.4	4245	1.6	0.18	21.64	0.09	24.2
Mean	6.2	2810	0.95	0.26	8.46	0.28	18.65
Count	6	6	6	6	6	6	6
Std Dev	0.31	3169	0.35	0.25	7.72	0.21	15.0

Table 2.1 - Average pre-development water quality

The range of the Phosphorous concentration values across the northern half of study site is between 0.03 mg/L at MB04 & MB05 and a high of 0.69 mg/L at MB01. Phosphorous concentrations across the site are generally low and within guideline values.

The Nitrogen (Total) (TN) has a mean value of 8.46 mg/L and a min/max range of 20 mg/L which indicates significant difference in values across the study site. The highest concentrations were observed around the south-east bore locations of MB06. The samples taken on 17 September 2009 and 14 December 2009 showed particularly high concentrations of Total Nitrogen, but the samples taken in all other monitoring events was similar to the other bores across the site.

Average pH values are around 6, which indicates that overall the site does not represent significant risk to down-gradient ecosystems.

Results of the groundwater quality monitoring are contained in Appendix B

2.5 Surface water

Surface runoff from the site is via overland flow from east to west, following the natural topography. There are some very shallow farm drains (approx 0.2 - 0.5m deep) across the site, which direct stormwater runoff towards the western side of the site. The main flow path through the site becomes more pronounced near the site's western border, and this existing waterway discharges to a Water Corporation main drain at Kargotich Road, approximately 1.5km west of the site.

Another Water Corporation main drain is present along the southern side of Mundijong Road. This drain also flows towards the west, but runoff from Precinct E2 doesn't fall within the catchment of this drain, with the exception of a small area to the east of the site, which flows across the south-eastern corner of Lot 50.

The Mundijong-Whitby DWMS (GHD, 2010) identified two flow paths which take runoff from upstream catchments east of Adams St through the site. The DWMS estimated the combined flow through the Precinct E2 site from upstream catchments to be approximately $12m^3/s$ under pre-development conditions (for the critical 100yr ARI event). 2-dimensional pre-development surface water model of the surrounding catchment was developed to confirm the estimated flow rates and flow paths outlined in the DWMS. The results of this modelling are outlined in Section 2.5.1 below.

2.5.1 Pre-development surface water modelling

Surface runoff from a 390ha catchment discharges through Lot 50 Cockram Street and Lot 7 Adams Street. Due to the relatively flat nature of the site and very shallow existing drains, there is significant interaction between flow paths throughout the catchment which makes the calculation of pre-development flow rates particularly complex.

A 2-dimensional surface water model was developed using XP Storm's 2D module, which has the ability to model floodplains and areas with poorly-defined flow paths with greater accuracy than a traditional 1-dimensional model. The model was developed to clarify pre-development flow rates from the overall catchment and to better delineate the flow paths through the catchment, as the existing drains are very shallow and not well defined. The extent of the upstream catchment was determined using LiDAR topographical data obtained from the Department of Water, and was generally consistent with the catchments shown in the Mundijong/Whitby DWMS.

The 2D modelling showed that pre-development flows entering Precincts E1 & E2 are concentrated into four main flow paths:

- Lot 9003 Adam St, between Kiernan St and Tonkin St
- Lot 7 Adams St, north of Livesey St
- Lot 119 Sparkman Rd, near Richardson St
- Lot 50 Cockram St, between Mundijong Road and Cockram St.

Figure 2.7 shows the extent of the upstream surface water catchment, and the main flow paths and peak predevelopment flow rates from the overall catchment, while the parameters used in the 2D modelling are detailed in Appendix C. Table 2.2 below summarises the pre-development flow rates at critical locations across the catchment for the peak 5-year and 100-year ARI events.

Flow location	5yr ARI peak flow	100yr ARI peak flow
A Lot 9003 Adams St - near Tonkin St	1.2 m ³ /s	2.9 m ³ /s
B Lot 7 Adams St - near Livesey St	0.8 m ³ /s	1.9 m ³ /s
C Lot 7 Adams St	1.8 m ³ /s	4.6 m ³ /s
D1 Lot 50 Cockram St - at Sparkman Rd	1.2 m ³ /s	2.1 m ³ /s
D2 Lot 50 Cockram St - south of Sparkman Rd	1.1 m ³ /s	3.3 m ³ /s
E1 Lot 119 Sparkman Rd - north-western corner	0.5 m ³ /s	1.4 m ³ /s
E2 Lot 119 Sparkman Rd - south-western corner	1.5 m ³ /s	3.2 m ³ /s
F Lot 50 Cockram St - western boundary (main drainage outlet)	3.6 m ³ /s	7.2 m ³ /s
G1 Lot 50 Cockram St - eastern boundary, between Mundijong Rd & Cockram St	1.0 m ³ /s	2.5 m ³ /s
G2 Lot 50 Cockram St - south-eastern corner, near Mundijong Rd	0.4 m ³ /s	0.9 m ³ /s
H Lot 50 Cockram St - south-western corner	0.5 m ³ /s	1.8 m ³ /s

The pre-development modelling results show the runoff that is generated within the Precinct E2 catchment, and these flow rates will be the allowable post-development flow rates from the development of the LSP area. Basins within the POS areas will be sized to attenuate post-development flows to these pre-development levels (to be determined for each subcatchment on a pro-rata area basis).

Table 2.3 - Allowable flow rates from Precinct E2

	5yr ARI peak flow	100yr ARI peak flow
Peak allowable flow rate from Precinct E2	1.0 m ³ /s	2.1 m ³ /s

3 WATER CONSERVATION

The DWMS identified two key objectives for water use and conservation in the Mundijong/Whitby DSP area:

- Ensure the efficient use of all water resources in the newly-developing urban form and aim to achieve highest value use of fit-for-purpose water.
- Maintain opportunities for future generations by using water more efficiently.

This development will be designed to minimise potable water use, and to ensure fit-for-purpose water use. "Fit-forpurpose" refers to the use of water that is of a suitable quality for the intended use. The use of high-quality drinking water for garden irrigation, for example, is not a fit-for-purpose use and lower-quality water (e.g. rainwater, groundwater etc) would be more suitable for this purpose.

The DWMS identified the following design criteria that should be considered for developments within the DSP area to achieve the water use objectives.

- Achieve a water consumption target of 100kL/person/year, of which only 40-60kL/person/year should be from potable water.
- Meet the State Government's '5-Star Plus' provisions for all new dwellings.
- Promote the use of native plants throughout the development. Non-turfed areas in POS to contain only native plants.
- Promote the use of on-site rainwater tanks to achieve water consumption targets.

Future urban water management plans (UWMPs) for the precinct will outline the specific water conservation measures that will be taken to ensure that the consumption targets are achieved.

3.1 Potable water supply

Potable water will be supplied from the Water Corporation's reticulated water supply.

The total water consumption target of 100kL/person/year is generally achieved through the use of waterwise fittings and appliances inside the house, along with planting water efficient gardens with minimal lawn areas and native, low-water-use plants. Future UWMPs will include a detailed water consumption estimate to show that the development can achieve the water consumption targets.

To achieve the potable water consumption target of 40-60kL/person/year, all water use outside the house (i.e. outdoor taps and irrigation) would need to be from non-potable sources like groundwater, rainwater or recycled water.

Appendix C contains an estimate of water consumption for the LSP area, based on the current estimate densities and approximate lot yield.

3.1.1 Water efficient appliances

Potable water use will be minimised throughout the LSP area by ensuring that new dwellings install water efficient appliances and fittings that comply with the State Government's 5 Star Plus program.

The requirements of the 5 Star Plus program have been incorporated into the Building Code of Australia to ensure that all new houses install water and energy efficient hot water systems, taps and toilets, and swimming pool covers.

In addition to these regulatory requirements, the developer will encourage lot purchasers to install water efficient appliances (e.g. washing machines) to further reduce potable water use.

3.2 Non-potable water supply

An important part of water sustainability is fit-for-purpose water use, or the use of alternative water sources for applications where drinking-quality water is not necessary (e.g. toilet flushing, garden watering).

The State Water Plan (Government of Western Australia, 2007) identified a potable water consumption target of 40-60 kL/person/year. This target can only by achieved if all outdoor water use is supplied by non-potable sources, and the widespread implementation of non-potable water schemes is most successful when installed with the construction of subdivision works. A non-potable water supply (third pipe) system would allow the use of alternative water sources throughout the development and would greatly reduce consumption of potable water.

The widespread implementation of non-potable water schemes is most successful when installed with the construction of subdivision works. A reticulated non-potable water supply (third pipe) system would allow the use of alternative water sources throughout the development and would greatly reduce consumption of potable water.

The Shire of Serpentine Jarrahdale is investigating potential alternative water sources that could be used for a thirdpipe scheme throughout the greater Mundijong area. The developer will continue to liaise with the Shire as the development process continues, with a view to implementing a reticulated third-pipe system should an alternative water source be available at the time of development. The road reserves within the development are wide enough to accommodate a third pipe network within the verges, should an alternative water source be available at the time of subdivision.

3.2.1 POS irrigation

Public open space is expected to be irrigated using groundwater from the superficial aquifer. The site falls within the Serpentine Groundwater Area, and the Byford 3 Groundwater Subarea. According to the Department of Water (September 2012), there is water available in the superficial aquifer, and a groundwater licence application is currently being assessed by the DoW with the licence expected to be issued in March 2013.

The groundwater licence application is for approximately 44 kL/yr, to irrigate 5.6 ha of POS and streetscapes. The primary school site has not been included in the application, and the DET will be responsible to secure a groundwater allocation for the primary school area. When the groundwater licence is approved, exploratory drilling will be undertaken to determine the possible yield in the proposed bore locations.

4 GROUNDWATER MANAGEMENT

4.1 Groundwater levels & subsoil drainage

The design of the development will need to achieve sufficient separation between finished lot levels and postdevelopment perched groundwater levels. This will be achieved via a combination of subsoil drainage and imported sand fill.

Existing groundwater levels are shallow, with some seasonal inundation occurring in low-lying areas of the site. During winter months, groundwater perches on the underlying clays, with the maximum measured water levels (in September 2009) within 0.8m of existing ground level. Water levels in late 2009 were representative of typical winter peak levels, and a calculation of typical winter perched water levels is included in Section 2.4.1.

The DWMS proposed controlled groundwater levels (CGLs) across the entire DSP area; however the levels shown are several metres above existing ground level in Precinct E2, and as such are not considered to be applicable to this LSP area.

We propose that the following criteria should apply to setting a localised CGL for Precinct E2 - which would set the minimum level for subsoil drainage or open drainage inverts:

- In areas near groundwater dependant ecosystems (eg CCWs), CGL should be equivalent to the pre-development perched winter water levels. The design of the subsoil drainage system will need to show that no drawdown of pre-development perched water levels will occur within wetlands or their buffers.
- In all other areas, the level of the underlying clay material will dictate minimum drainage and subsoil drainage invert levels. Some localised shaping of the clay may be undertaken, to ensure ponding of perched water in localised low points is avoided. Open drains and bioretention areas should be designed to ensure that baseflow during winter months is contained within defined areas that will be planted with sedges and appropriate plant species.
- Subsoil drainage invert levels at the outfall locations should be at least 0.6m above the invert of the closest open drain, to ensure sufficient separation above baseflow levels. Subsoil drains should discharge to bioretention treatment areas.

4.1.1 Subsoil drainage network

A combination of imported sand fill and subsoil drainage will be used to ensure adequate separation between finished lot levels and perched water levels, and to alleviate the perching of infiltrated rainwater on the impermeable clay soils & ferricrete across the site. Finished lot levels are to be a minimum of 1.5m above subsoil drainage inverts, or 1.8m above the underlying clay surface - whichever is higher.

Minimum subsoil drainage levels will be dictated by several factors - the level of the clay & ferricrete material present across the site; the invert level of the open drainage swales at subsoil outfall locations; and in the upstream reaches of the subsoil drainage network the invert levels will be governed by minimum pipe grades.

The underlying clay & ferricrete material will be shaped towards the proposed open drains through POS corridors in localised areas, with the invert of the open drains to be no lower than the graded clay surface. Subsoil drains will be installed to alleviate the perching of infiltrated rainfall that occurs during winter months, with outfalls to be at least 0.6m above open drain inverts to ensure sufficient freeboard above winter baseflow levels. Subsoil drainage inverts must be above the clay surface in all locations to allow the drains to operate effectively.

The detailed design of the subsoil drainage network will need to ensure that subsoil drains at the southern end of the site, near Mundijong Road, will be at or above typical pre-development perched water levels, to ensure that water levels in the CCW along Mundijong Road are not affected by the development.

4.2 Groundwater quality

Groundwater quality will primarily be managed through the landscaping design, with the design to include plants that required low fertiliser use to reduce the amount of nutrients leaching into the groundwater. A similar approach will be taken with the landscaping packages offered to residents, which will include information on minimising fertiliser use.

The perched groundwater that is intercepted by subsoil drains during winter months will be treated in bioretention swales at the drainage outfalls, which will be located in POS areas and will be designed with appropriate soil media and plant species to retain and treat the discharge from subsoil drains.

5 SURFACE WATER MANAGEMENT

The Mundijong/Whitby DWMP identified the following key strategies for the management of stormwater in the DSP area:

- Minimise changes in hydrology to prevent impacts on receiving environments (by managing post-development runoff to pre-development flow rates, and promoting on-site retention of the 1yr 1hr ARI storm event)
- Manage surface water flows from major events to protect infrastructure and assets
- Uphold environmental values of downstream waterways within and surrounding the study area.

The surface water strategy for the site is to generally maintain the pre-development flow paths, which follow the site's natural topography. Storage basins and swales will be integrated into the public open space to attenuate post-development runoff and ensure that runoff discharging from the site is within pre-development flow rates, to protect downstream landholdings from flooding.

The open drains that convey flow from upstream catchments - and from the basins within the site - to downstream waterways have been sized with a trapezoidal shape. The drains have a 3m wide base, with 1:6 side slopes, and the 100yr flood depth in these drainage swales is between 0.5m and 1.2m. The drainage swales will be landscaped to appear as a natural, landscaped living stream.

Main detention storage areas for 5yr and 100yr ARI events should be designed with their invert level 0.6m above the invert of the adjacent open drain. This will allow room for localised subsoil drainage beneath the main basins, to encourage infiltration and avoid extended waterlogging of the basin areas during periods of high groundwater.

5.1 Stormwater modelling

5.1.1 Local drainage management

Road runoff from events up to 1yr ARI will be directed into the bioretention swales in POS areas for on-site retention. Residential lots are expected to retain runoff from roof and hardstand areas in soakwells within the lot.

Inflows from the upstream catchment to the east of Precinct E2 have been allowed for in the design of the open drainage swales through Precinct E2.

JDA Consultant Hydrologists has prepared an LWMS to address water management for Precinct E1 (immediately north of Precinct E2), which proposes to discharge flow from the Precinct E1 LSP area along the Sparkman Road reserve, without discharging into Precinct E2. This flow would be piped for up to the 5yr ARI event, and conveyed by overland flow for major storm events.

Runoff within Precinct E2 will be managed by collecting road runoff in a piped drainage network, which will discharge to flood storage basins in the POS areas. These basins will act to attenuate the runoff to predevelopment levels and will discharge to the open drains which replicate, as closely as practicable, the predevelopment flow paths through POS corridors.

Table 5.1 below shows the required storage areas for the 1yr 1hr ARI and critical 5yr and 100yr ARI storm events to attenuate post-development runoff to allowable (pre-development) levels. Parameters used in the stormwater modelling to size the storage areas are included in Appendix C.

Table 5.1 - Required storage v	volumes for critical storm events
--------------------------------	-----------------------------------

Basin ref	1yr 1hr ARI bioretention area	5yr ARI flooded area	100yr ARI flooded area
1	370 m ²	1,000 m ²	1,300 m ²
2	540 m ²	1,000 m ²	1,300 m ²
3	1,050 m ²	1,800 m ²	2,300 m ²
4	480 m ²	1,600 m ²	1,900 m ²
5	930 m ²	2,600 m ²	3,100 m ²
6	820 m ²	3,100 m ²	3,900 m ²
7	1,710 m ²	3,400 m ²	3,900 m ²
8	550 m ²	1,000 m ²	2,100 m ²

5.1.2 Major flood management

Earthworks design through Precinct E2 will ensure that roads grade towards the POS areas, with finished floor levels required to achieve a minimum of 0.3m above 100yr flood levels in all parts of the catchment (0.5m above 100yr flood levels in basins and open drains).

The outlets from the flood storage basins, and culverts at road crossings, will be sized to ensure that postdevelopment flows at the downstream (western) end of the site are within pre-development levels. Figure 5.1 shows the required storage areas for the critical 100yr ARI storm event to attenuate post-development runoff to allowable levels.

Figure 5.2 shows the expected 5yr & 100yr ARI flood width and depths in the open drains through the POS corridors.

5.1.3 Diversion of upstream flows

The location of the drainage connection for upstream catchments at the southern end of the LSP area does not align with the pre-development inflow location. Under pre-development conditions, runoff from the southern part of the catchment enters the site between Cockram Street and Mundijong Road (noted as Locations G1 and G2 on Figure 2.7).

The main flow path (G1) will be intercepted where it crosses Cockram Street and piped to the MUC south of the proposed primary school.

A small flow path (G2) takes overflow from the flow path at G1, crosses the south-east corner of the LSP area and discharges to the existing open drain on the southern side of Mundijong Road. This overflow path will be diverted via piped drainage along Adonis Street when the south-eastern corner of the LSP area is developed.

5.2 Surface water quality

Surface water quality will be managed via the bioretention treatment swales within each POS area. Stormwater runoff will be directed into these areas, which will be constructed with amended soil and planted with appropriate plant species to maximise nutrient uptake from the stormwater runoff.

The provision of landscaping packages to lot purchasers will ensure that appropriate native species that require minimal fertiliser use are planted, and educational material will be provided to landowners about appropriate fertiliser use, to minimise the amount of fertiliser wash-off from gardens into the stormwater drainage network.

5.3 Wetlands & waterways

There are no significant wetlands or water-dependant ecosystems within Precinct E2, but there is a CCW to the south of the site, alongside Mundijong Road. No stormwater flow from the development will discharge to this wetland area, and subsoil drainage in the vicinity of the wetland area will be designed with invert levels are at or above typical winter perched water levels to ensure that water levels in this wetland area are not impacted by the development.

6 MONITORING AND IMPLEMENTATION

6.1 Monitoring program

The proposed monitoring program for the LSP area is outlined in Table 6.1 below, and indicative monitoring locations are shown in Figure 6.1. The monitoring locations are shown in areas of POS, and are subject to change as the planning process progresses and the subdivision layout evolves.

Table 6.1 - Monitoring program

Responsible agency	Monitoring program	Requirements	Duration & frequency
	Pre-development groundwater monitoring	GW levels & nutrients (pH, EC, TN, FRP, TKN, ammonia, TP, heavy metals).	Minimum period of 18 months (including 2 winters), preferably 3 years. Monthly water levels, quarterly water quality.
Developer	Post-development groundwater monitoring	GW levels & nutrients (pH, EC, TN, FRP, TKN, ammonia, TP, heavy metals).	Period of 2 years post-development (including at least 1 year following completion of 80% of the development. Monthly water levels, quarterly water quality.
	Post-development surface water monitoring	Flows, water levels & nutrients (pH, EC, TN, FRP, TKN, ammonia, TP, heavy metals)	Period of 2 years post-development (including at least 1 year following completion of 80% of the development. Levels and water quality as appropriate during winter periods.
SJ Shire - with funding from developer contribution scheme	Post-development groundwater & surface water monitoring	Monitor local superficial groundwater levels, water quality and flows within development & wetlands, behavioural patterns with respect to non-structural measures for water quality management.	After developer-funding monitoring program is complete.
DoW	Regional groundwater & surface water monitoring	Monitor regional surface water flows & quality, confined aquifer& regional groundwater levels & quality, groundwater abstraction, efficacy of BMPs, performance of new drainage systems.	Ongoing

Responsible agency	Monitoring program	Requirements	Duration & frequency
DEC	Environmental asset monitoring	Evaluate health of significant environmental assets.	Ongoing

6.2 Trigger values and contingency actions

6.2.1 Groundwater quality targets

Groundwater quality targets for the LSP area have been determined (Table 6.2 below). Target values are set with regard to the baseline quality data and the potential to improve the groundwater quality at the site. Targets are the mean plus one standard deviation and are considered to be met if the mean of all the post development bores is within the target range.

Table 6.2 - Post-development groundwater quality targets

Analyte	Groundwater quality target
рН	> 5.9
Electrical conductivity	< 5900 µS/cm
Dissolved oxygen	< 1.3 mg/L
Phosphorous	< 0.5 mg/L
Total Nitrogen	< 15.7 mg/L
Ammonium	< 1.0 mg/L
Iron (mg/L)	< 33.7 mg/L

6.2.2 Contingency actions

If post-development monitoring finds that water quality-related objectives are not being met, the developer and Shire would undertake the following procedures:

• Ensure that the development has fully complied with development conditions relating to water quality management (i.e. installation and operation of BMPs). If such BMPs have not been designed and installed as approved, then the developer would do so or council would be entitled to take regulatory action for a breach of development conditions.

• Investigate opportunities to apply additional non-structural BMPs to the study area (e.g. educational programs, street sweeping, nutrient management plans, alteration of maintenance regimes, soil amendment, local rainwater tank rebate scheme etc). Funding for such additional measures would typically be covered by the local government authority.

These contingency actions will depend on the specific BMPs that are implemented in the development, and will be confirmed as part of future UWMPs within the LSP area.

6.3 Implementation

Table 12 of the Mundijong/Whitby DWMS includes an extensive list of actions & responsibilities for the implementation of the measures outlined in the DWMS.

6.4 Matters to be addressed in future UWMPs

Future urban water management plans for developments in the Precinct E2 area will include more detailed information on the design of the following infrastructure:

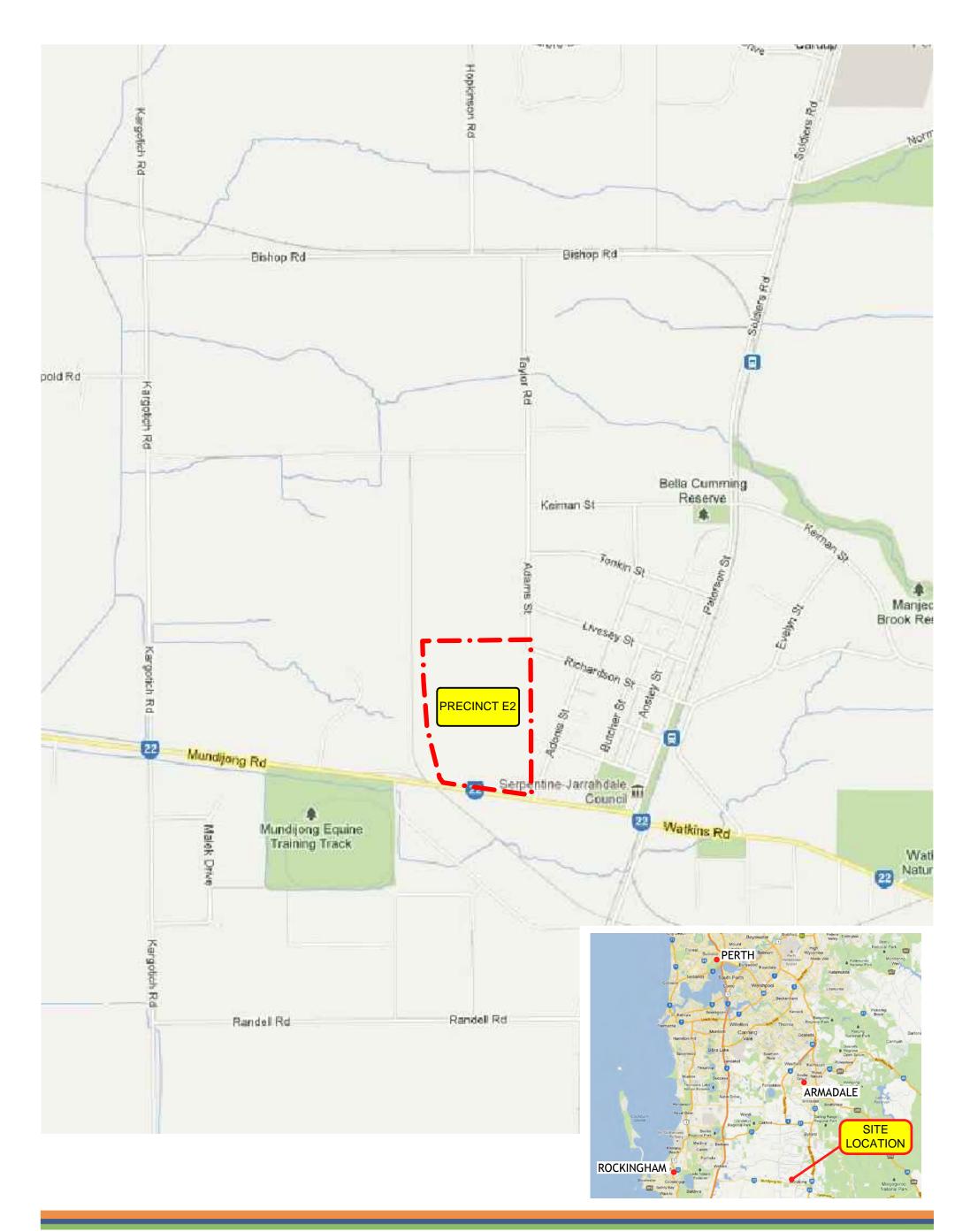
- Stormwater retention/detention basin sizes, depths & configurations, including details of bioretention areas.
- Subsoil drainage layouts & invert levels.
- Minimum earthworks levels to achieve drainage design objectives.
- Proposed cross-sections for open drains through the site.
- Confirmation that the final stormwater drainage design achieves the objectives of this LWMS particularly that post-development flow rates remain within pre-development levels.
- Details of the specific water-conservation measures that will be applied at the site (including any proposed non-potable water supply).
- POS landscaping concept plan, and confirmation that a water source for POS irrigation has been secured.

7 **REFERENCES**

Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ & ANZECC) (2000), *National Water Quality Management Strategy Australian Guidelines for Urban Stormwater Management*

Cardno (2011), Whitby, Various Lots - Local Water Management Strategy

Department of Water (2008), Stormwater Management Manual for Western Australia


Engineers Australia (2001), Australian Rainfall & Runoff, A Guide to Flood Estimation

Galt Geotechnics (2011), Geotechnical Study - Proposed Residential Development Lot 46 Mundijong Road, Mundijong

GHD (2010), Mundijong Whitby District Structure Plan - District Water Management Strategy

Shire of Serpentine Jarrahdale (2010), Mundijong/Whitby District Structure Plan

Western Australian Planning Commission (2008), Better Urban Water Management

WAVE INTERNATIONAL PTY LTD.

Mezzanine 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com

PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

SITE LOCALITY PLAN

Job Number | 2681-22 vision A Date OCTOBER 2012 Revision

FIGURE 1.1

Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-01-01.dwg - anthony iddon - 29/10/2012 2:19:45 PM

SCALE 1:4000

WAVE INTERNATIONAL PTY LTD.

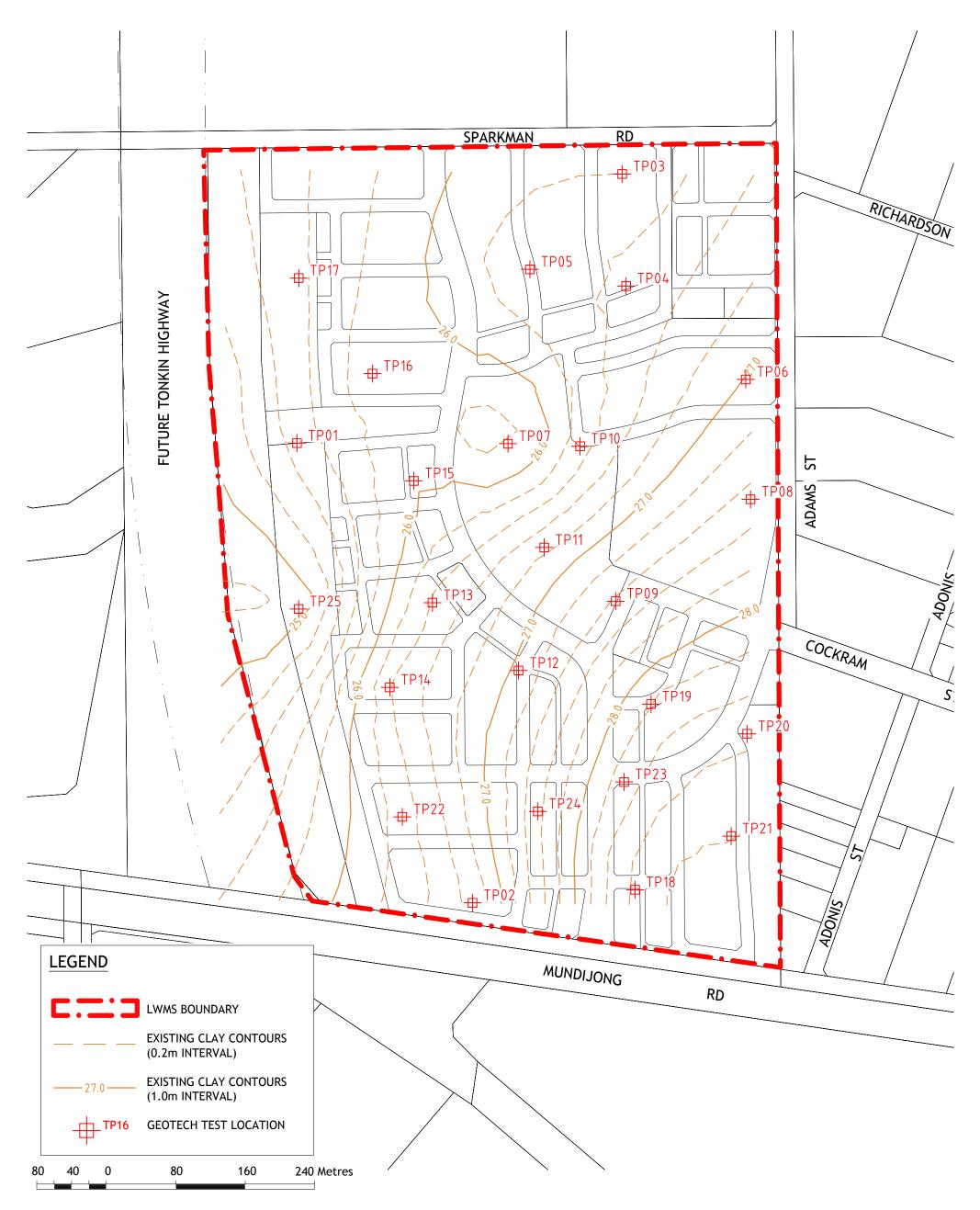
WAYE INTERNATIONAL PTY LTD. Mezzanine 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com

PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

LOCAL STRUCTURE PLAN LAYOUT

Job Number | 2681-22 Revision А Date OCTOBER 2012

FIGURE 1.2


Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-01-02.dwg - anthony iddon - 29/10/2012

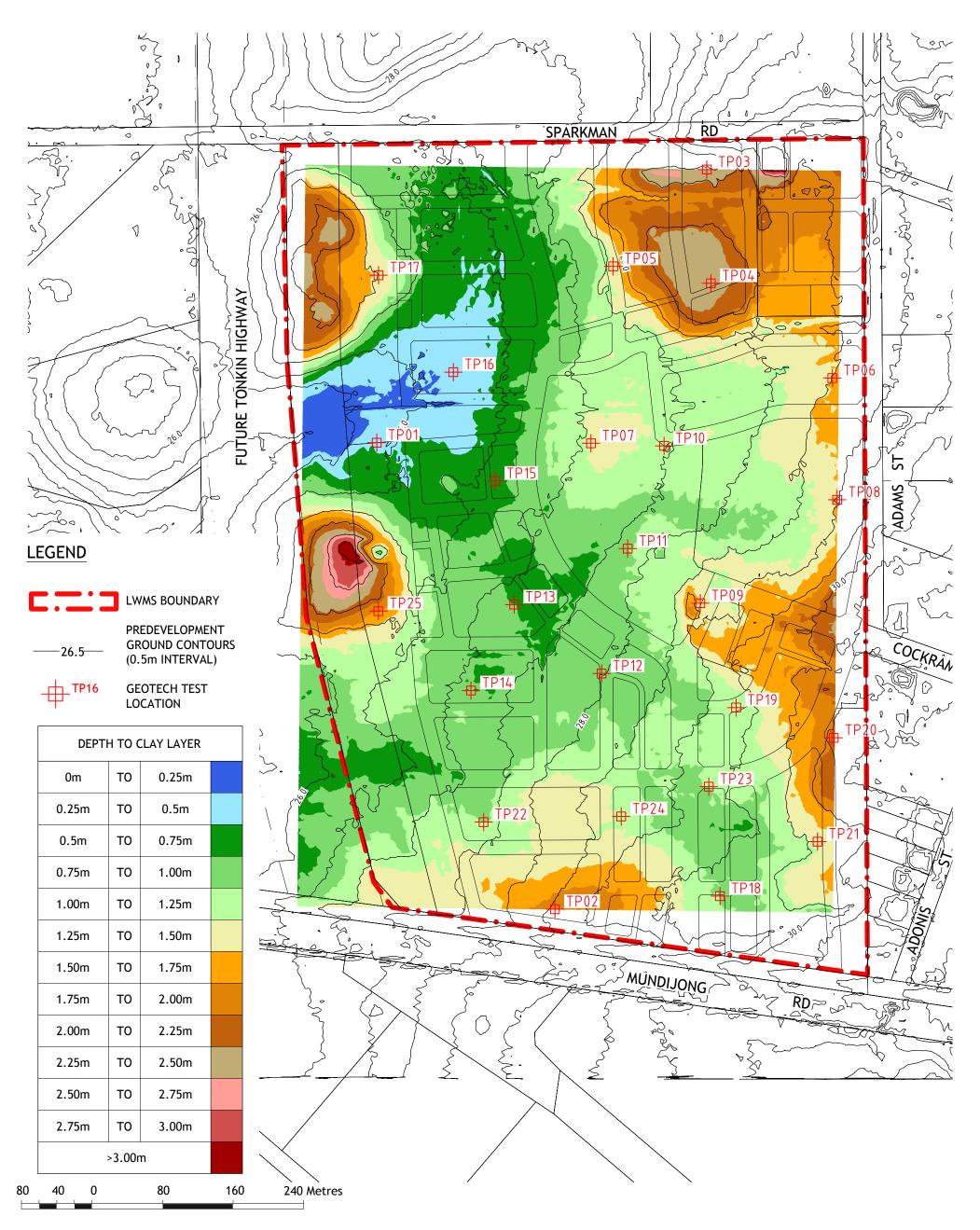
SCALE 1 : 4000

Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-02-01.dwg - anthony iddon - 29/10/2012 1:40:53 PM

SCALE 1:4000

WAVE INTERNATIONAL PTY LTD. Mezzanine

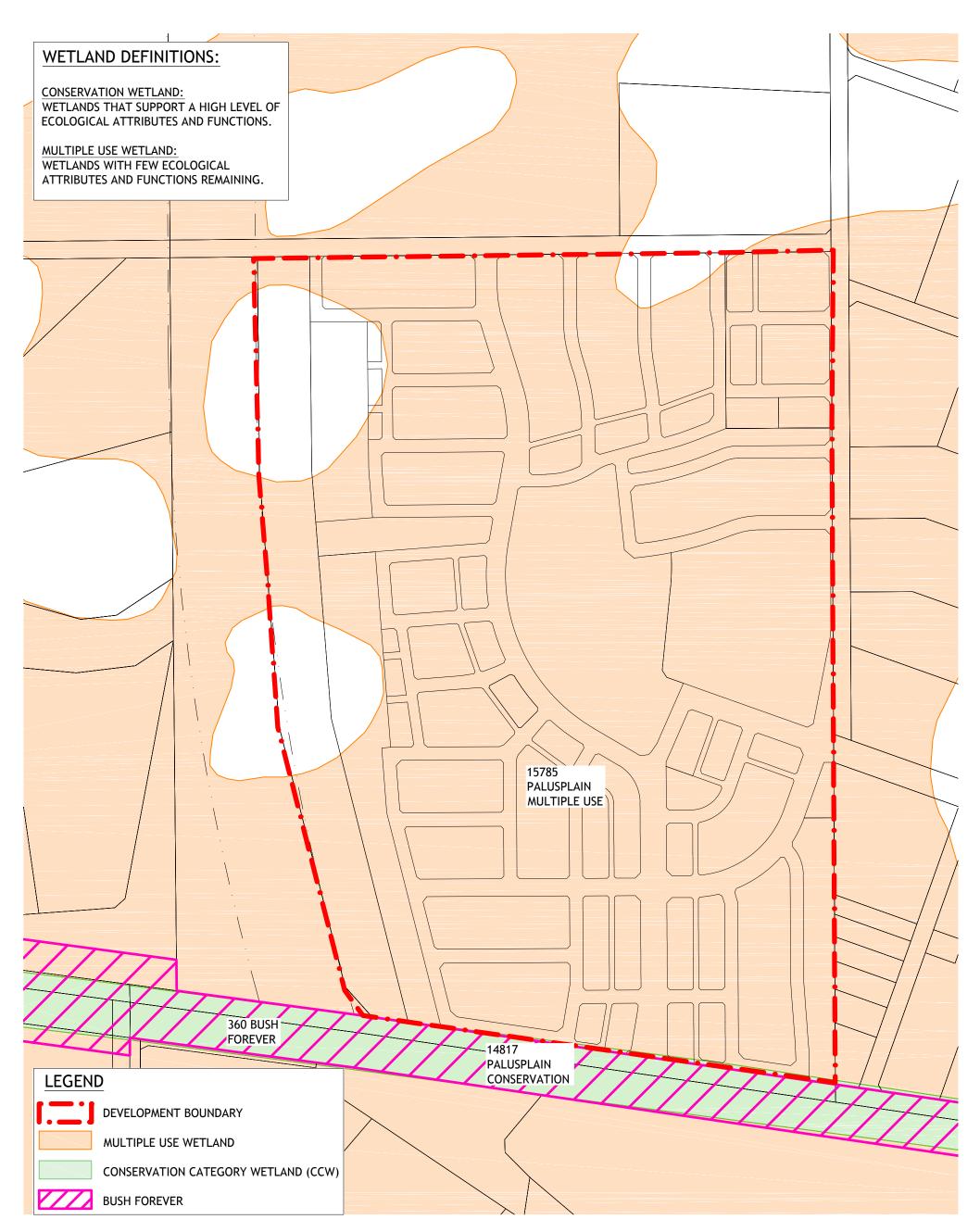
Mezzanne 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com



PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

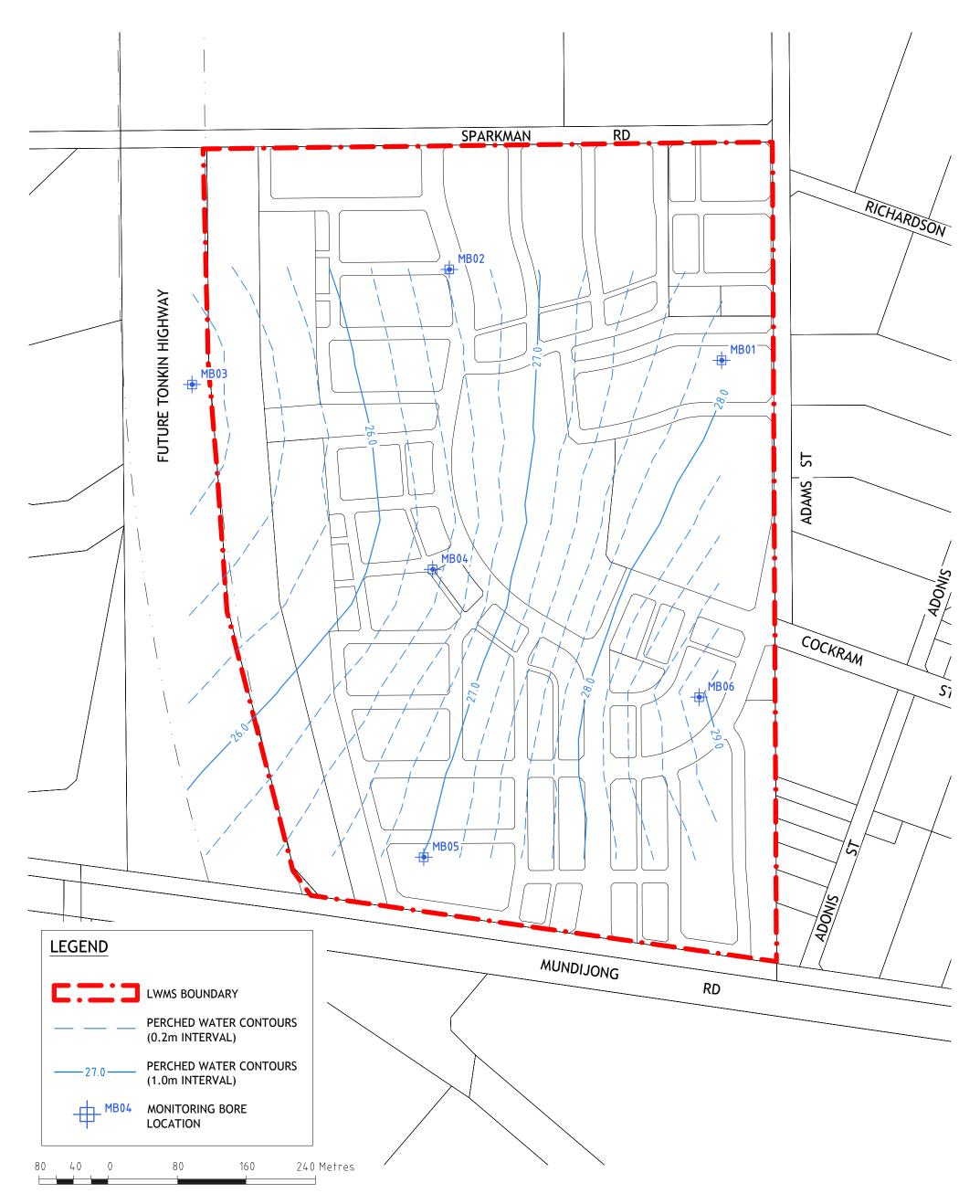
GEOTECHNICAL TEST PIT LOCATIONS & CLAY CONTOURS Job Number | 2681-22 Revision | A Date | OCTOBER 2012

FIGURE 2.2


Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-02-02.dwg - anthony iddon - 29/10/2012

SCALE 1 : 4000

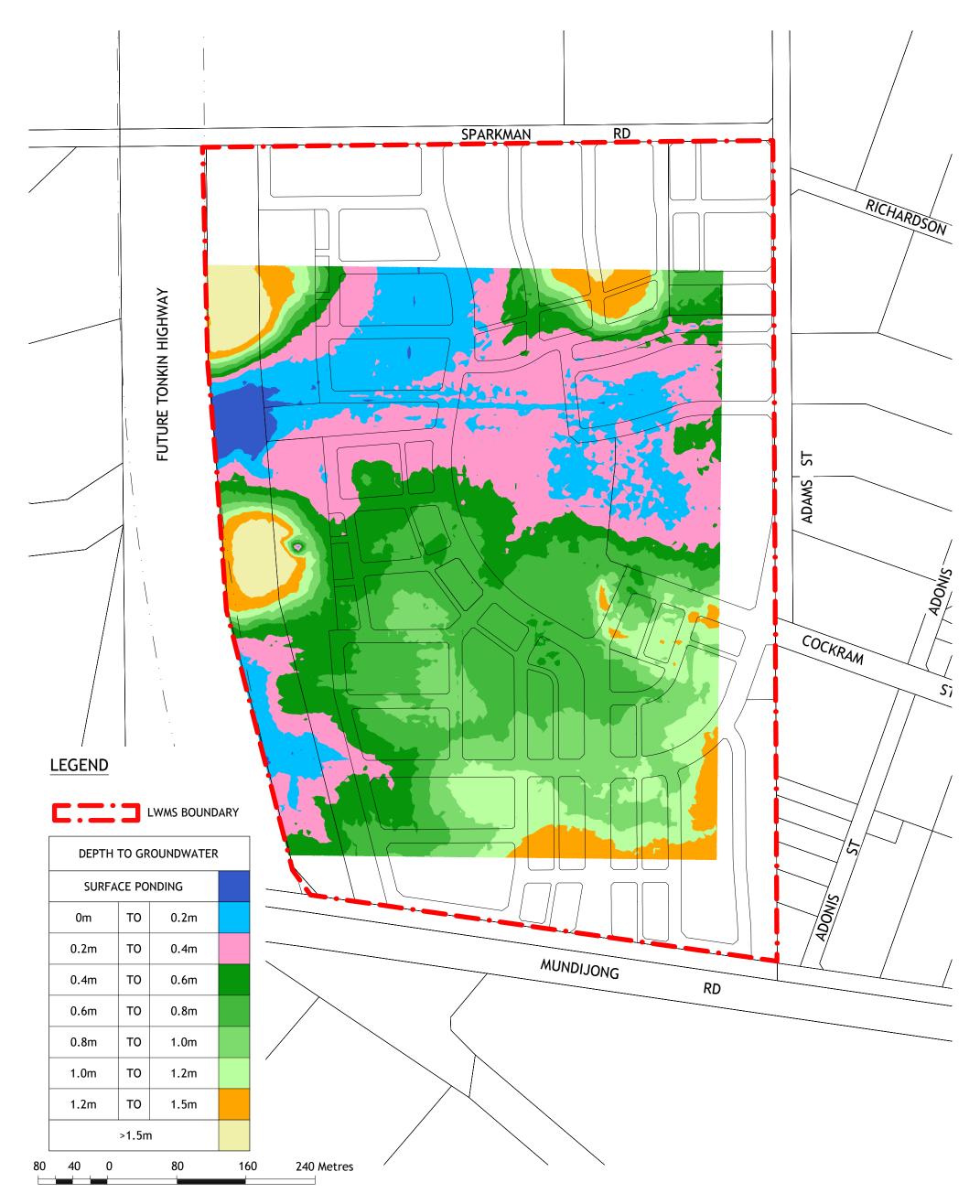
Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-02-03.dwg - anthony iddon - 29/10/2012



SCALE 1 : 4000

Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-02-04.dwg - anthony iddon - 29/10/2012 2:19:24 PM

SCALE 1:4000


WAVE INTERNATIONAL PTY LTD. Mezzanine 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com

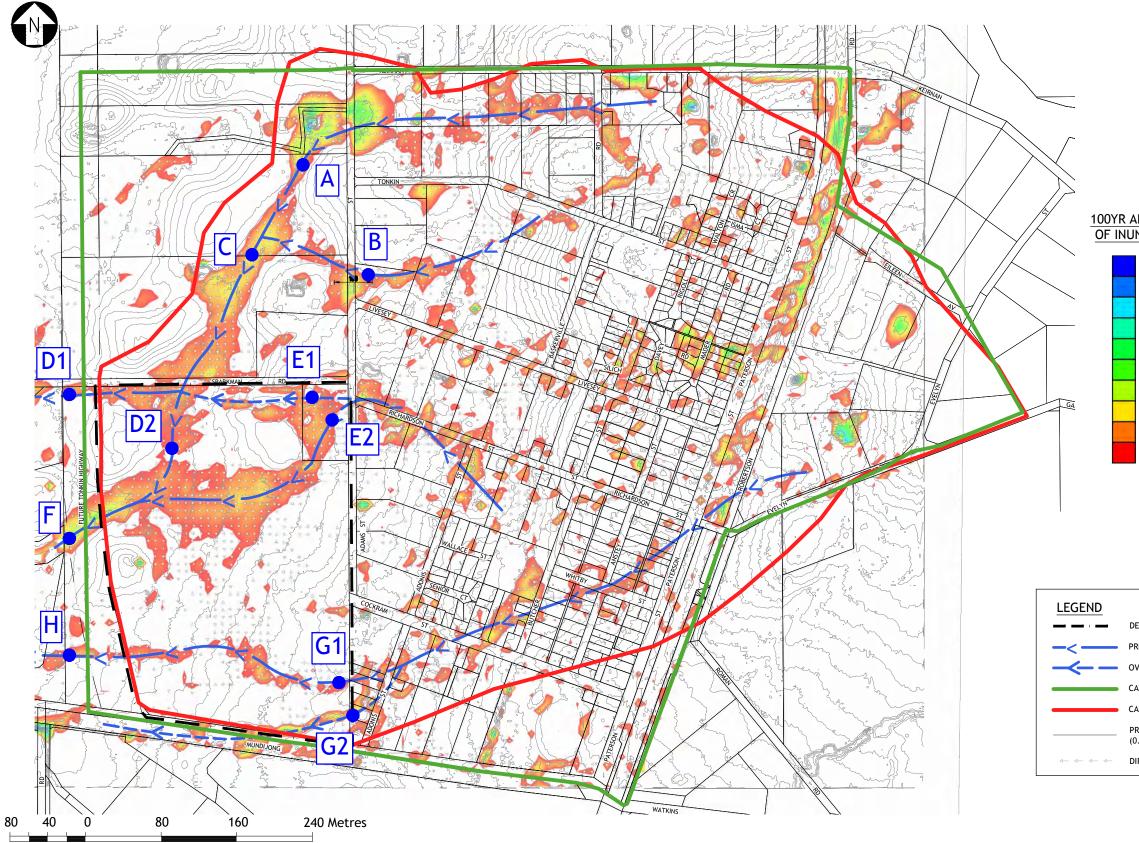
PEET LIMITED MUNDIJONG PRECINCT E2 LWMS Job Number | 2681-22 Revision | A Date | OCTOBER 2012

MONITORING BORE LOCATIONS & PRE-DEVELOPMENT WINTER PERCHED WATER LEVELS FIGURE 2.5

Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-02-05.dwg - anthony iddon - 29/10/2012

SCALE 1:4000

Mezzanine 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com


PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

DEPTH TO PRE-DEVELOPMENT PERCHED WINTER WATER LEVELS

Job Number 2681-22 Revision Α Date OCTOBER 2012

FIGURE 2.6

Q:\1550 PEET\F\2681\22\600\640 Sketches\2681-22-SK-02-06.dwg - anthony iddon - 29/10/2012

SCALE 1 : 4000

WAVE INTERNATIONAL PTY LTD Mezzanine, 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com

PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

PRE-DEVELOPMENT SURFACE FLOW PATHS

ARI DEPTH JNDATION A 1.2	100yr Q (m ³) 2.9 1.9
	1.9
1.000m B 0.8	
0.900m C 1.8	4.6
0.800m D1 1.2	2.1
0.700m D2 1.1	3.3
0.600m E1 0.5	1.4
0.500m E2 1.5	3.2
0.400m F 3.6	7.2
0.200m G1 1.0	2.5
0.100m G2 0.4	0.9
н 0.5	1.8

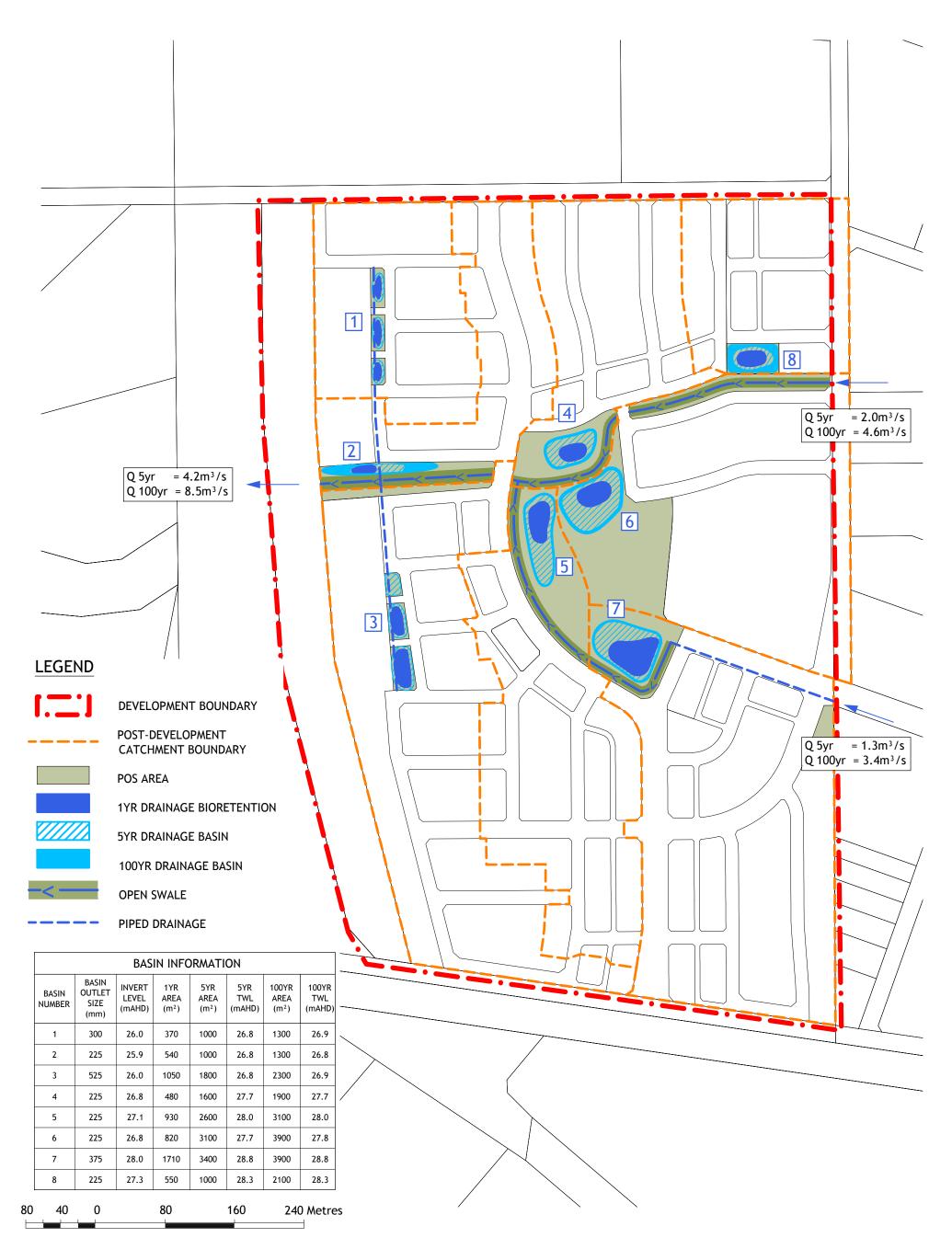
DEVELOPMENT BOUNDARY

PRE-DEVELOPMENT FLOW PATH

OVERLAND FLOW PATH FOR MAJOR STORM EVENTS

CATCHMENT BOUNDARY (GHD DWMS)

CATCHMENT BOUNDARY (2D MODELLING)


PREDEVELOPMENT GROUND CONTOUR (0.5m INTERVAL)

DIRECTION OF FLOW

Job Number | 2681-22 Revision

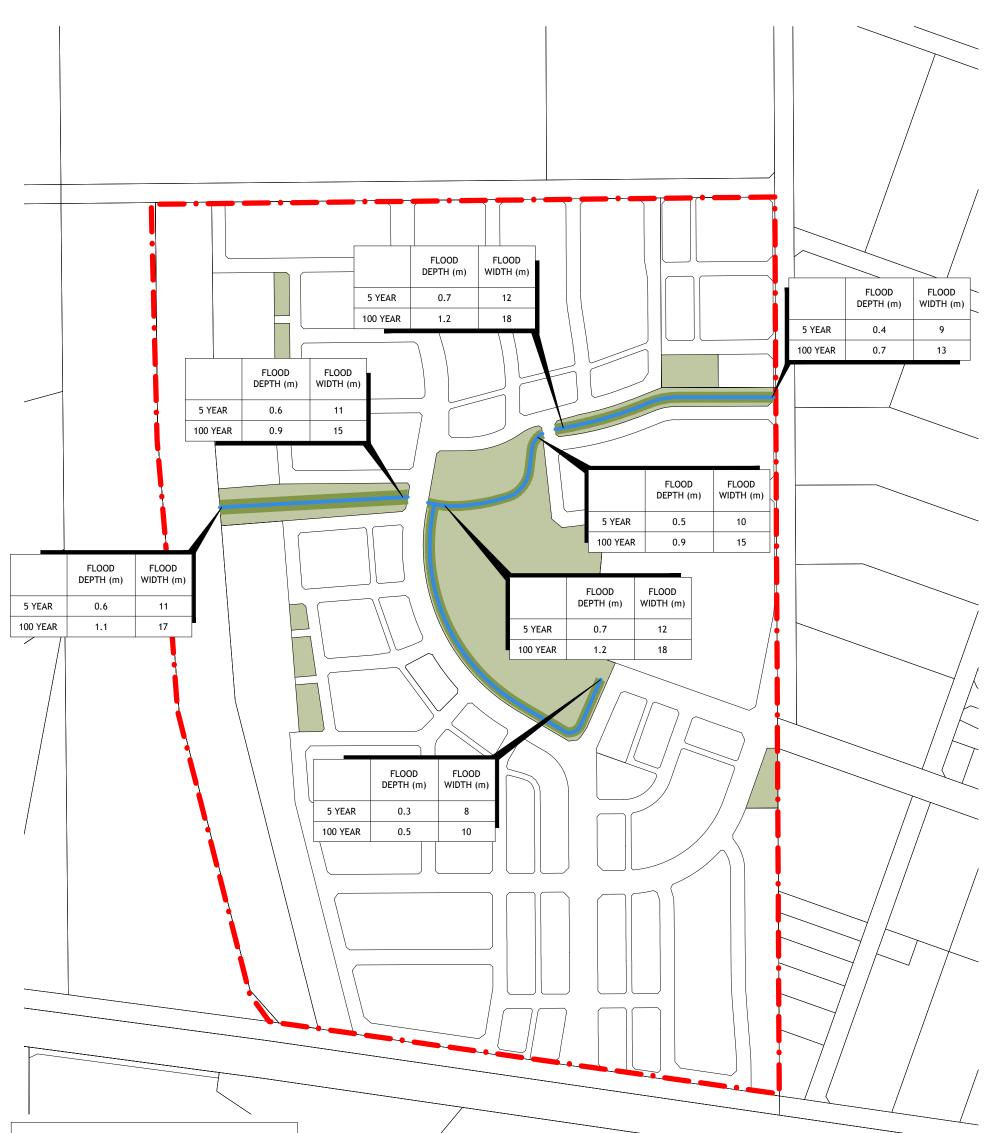
А Date OCTOBER 2012

FIGURE 2.7

SCALE 1:4000

WAVE INTERNATIONAL PTY LTD. Mezzanine

306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com



PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

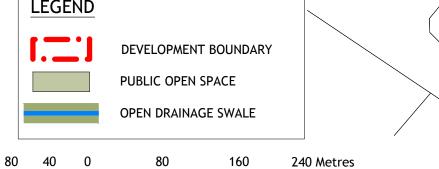
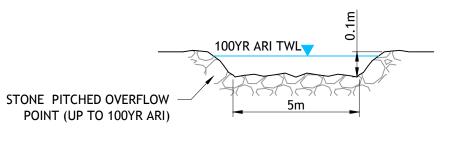
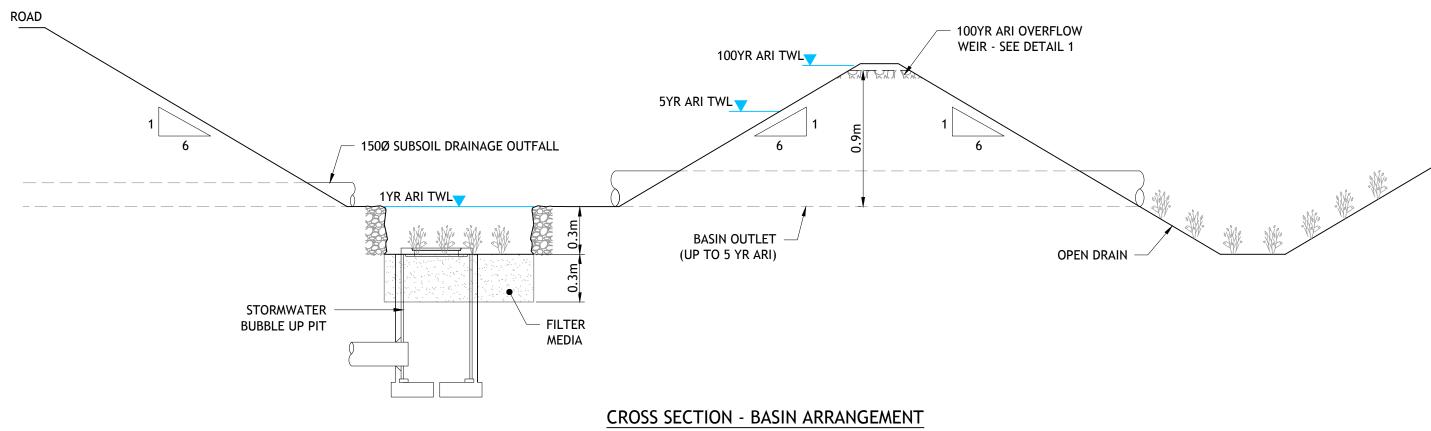

POST DEVELOPMENT DRAINAGE MANAGEMENT Job Number | 2681-22 Revision | C Date | MARCH 2013

FIGURE 5.1

Q:\1550 PEET\C\2681\22\600\640 Sketches\2681-22-SK-05-01.dwg - anthony iddon - 22/03/2013

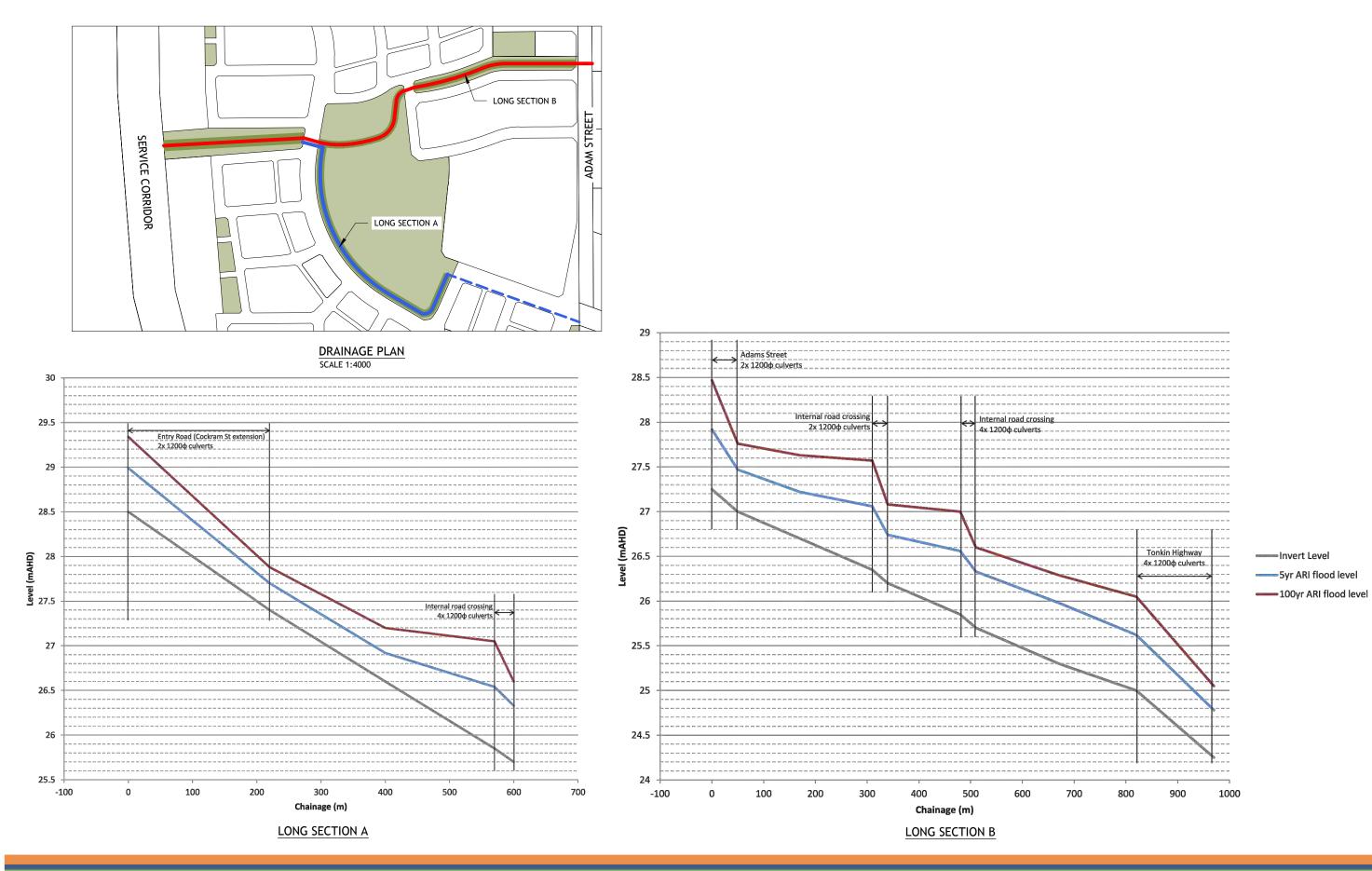

E


SCALE 1 : 4000

Q:\1550 PEET\C\2681\22\600\640 Sketches\2681-22-SK-05-02.dwg - anthony iddon - 13/02/2013

NOT TO SCALE

WAVE INTERNATIONAL PTY LTD Mezzanine, 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com


PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

BASIN OUTLET CONFIGURATION

FIGURE 5.3

Job Number | 2681-22 Revision

А Date FEBRUARY 2013

international DETERMINE . DESIGN . DELIVER

Mezzanine, 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com

WAVE INTERNATIONAL PTY LTD

PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

INDICATIVE OPEN DRAIN LONG SECTIONS

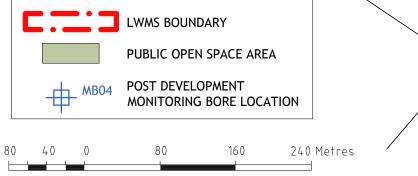

Q:\1550 PEET\C\2681\22\600\640 Sketches\2681-22-SK-05-04.dwg - anthony iddon - 13/02/2013

FIGURE 5.4

Job Number | 2681-22

Revision A Date FEBRUARY 2013

SCALE 1:4000

WAYE IN TERNATIONAL PTY LTD. Mezzanine 306 Murray Street PERTH, WA 6000 Telephone: +61 8 92040700 Email: enquiries@wavesolutions.com.au Web: www.waveinternational.com

PEET LIMITED MUNDIJONG PRECINCT E2 LWMS

INDICATIVE POST-DEVELOPMENT MONITORING BORE LOCATIONS

Job Number 2681-22 Revision Α Date FEBRUARY 2013

FIGURE 6.1

Q:\1550 PEET\C\2681\22\600\640 Sketches\2681-22-SK-06-01.dwg - anthony iddon - 13/02/2013

www.waveinternational.com

APPENDIX A - Geotechnical bore logs

engineering project management environment

ALETHOL	HOLE AND TEST PIT					
AC	Air Core	E	Excavator		PQ3	PQ3 Core Barrel
AC AD/T	Auger Drilling with TC-Bit	EH		ith Hammer	PT	Push Tube
AD/V	Auger Drilling with V-Bit	HA	Hand Auger		R	Ripper
AT	Air Track	HMLC	HMLC Core		RR	Rock Roller
В	Bulldozer Blade	HQ3	HQ3 Core B		SON	Sonic Rig
BH	Backhoe Bucket	N	Natural Exp		SPT	Driven SPT
CT	Cable Tool	NMLC	NMLC Core		WB	Washbore
DT	Diatube	PP	Push Probe	<u></u>	х	Existing Excavation
SUPPOR	Т					
Т	Timbering					
PENETRA	TION EFFORT (RELATIVE TO THE E	QUIPME	NT USED)			
VE	Very Easy	E	Easy		F	Firm
Н	Hard	VH	Very Hard			
WATER			1.1.1.1.1			
	Water Inflow		•	Water Level		
-	Water Loss (complete)					
\triangleleft	Water Loss (partial)					
SAMPLI	NG AND TESTING					
В	Bulk Disturbed Sample			Р	Piston Sam	ole
BLK	Block Sample			PBT	Plate Bearin	ng Test
С	Core Sample			U	Undisturbe	d Push-in Sample
CBR	CBR Mould Sample				U50: 50 mn	n diameter
D	Small Disturbed Sample			SPT	Standard Pe	enetration Test
ES	Environmental Soil Sample				Example: 3,	4,5 N=9
EW	Environmental Water Sample				3,4,5: Blow	s per 150 mm
G	Gas Sample				N=9: Blows	per 300 mm after
U	Hand Penetrometer				150 m	im seating interval
HP				VS	Vane Shear	; P = Peak
	Large Bulk Disturbed Sample					
HP	Large Bulk Disturbed Sample Mazier Type Sample				R = Remoul Water Sam	

METHOD OF SOIL DESCRIPTION BOREHOLE AND TEST PIT REPORTS

Graphic	USCS	Soil Name	Graphic	USCS	Soil Name
		FILL (various types)		ML	SILT (low liquid limit)
2000 2000 2000 2000 2000 2000 2000 200	-	BOULDERS and/or COBBLES		МН	SILT (high liquid limit)
	GP	GRAVEL (poorly graded)		CL	CLAY (low plasticity)
	GW	GRAVEL (well graded)		СІ	CLAY (medium plasticity)
200	GC	Clayey GRAVEL		СН	CLAY (high plasticity)
· 《 作品 《 字句	SP	SAND (poorly graded		OL	Organic SILT (low liquid limit)
	sw	SAND (well graded)		он	Organic SILT (high liquid limit)
	SC	Clayey SAND	1000	Pt	PEAT

RESISTANCE TO EXCAVATION Symbol Term Description

Symbol	Term	0
VE	Very easy	
E	Easy	
F	Firm	
Н	Hard	
VH	Very hard	

All resistances are relative to the selected method of excavation

SOIL CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil descriptions are based on AS1726-1993, Appendix A. Material properties are assessed in the field by visual/tactile methods in combination with field testing techniques (where used).

PARTICL	E SIZE			F	LASTICIT	Y PROPERTIES				
Soil	Name	Particle Size (mm)]	F	40 -					
BOU	LDERS	>200	1						CH - high	
COB	BLES	63 to 200	1		8 30 -			CI - medium plasticity clay	plasticity clay	
	Coarse	20 to 63	1		Plasticity Index (%) 0 07 08 0 08 0 08 0 08 0 08 0 08 0 08 0	CL - low plasticity clay		plasticity clay		
GRAVEL	Medium	6 to 20			pul 20 -	plasticity city		/		
10000	Fine	2 to 6			11 20 -			/	OH or MH -	- M
1.00	Coarse	0.6 to 2.0			stic		/	/	high liquid limit silt	
SAND	Medium	0.2 to 0.6			ed 10 -		_/	OL or ML - low liquid	in the site	
[일: 2]	Fine	0.075 to 0.2			N	CL/ML - clav/silt	/	limit silt		
FINES	SILT	0.002 to 0.075			0 -	OL or ML - low liquid	limit silt	-		
FINES	CLAY	< 0.002			C) 20		40	60	80
	RE COND	ITION Description			\S1726-199	93		d Limit (%)		
MOISTU Symbol	-	Description								
Symbol D	Term Dry	Description Sands and gravels a		wing. Clays an	d silts may	be brittle or fria	ble and po	owdery.		
Symbol D M	Term Dry Moist	Description Sands and gravels a Soils are darker thar	n in the dr	wing. Clays an y condition and	d silts may d may feel	be brittle or fria cool. Sands and	ble and po	owdery.		
Symbol D	Term Dry	Description Sands and gravels a	n in the dr	wing. Clays an y condition and	d silts may d may feel	be brittle or fria cool. Sands and	ble and po	owdery.		
Symbol D M W	Term Dry Moist Wet	Description Sands and gravels a Soils are darker thar	n in the dr	wing. Clays an y condition and and gravels te	d silts may d may feel nd to cohe	be brittle or fria cool. Sands and	ble and pc gravels te	owdery.		
Symbol D M W	Term Dry Moist Wet	Description Sands and gravels an Soils are darker thar Soils exude free wat	n in the dr	wing. Clays an y condition and and gravels te	d silts may d may feel nd to cohe	be brittle or fria cool. Sands and re.	ble and pc gravels te	owdery. nd to coh		PSP Blows per 300 mm
Symbol D M W CONSIST	Term Dry Moist Wet	Description Sands and gravels al Soils are darker than Soils exude free wat D DENSITY Undrained Shear	n in the dr ter. Sands	wing. Clays an y condition and and gravels te DCP blows	d silts may d may feel nd to cohe AS1726-199	be brittle or fria cool. Sands and ere. 93 and HB160-20	ble and po gravels te 006 Density	owdery. nd to coh	ere.	
Symbol D M W CONSIST	Term Dry Moist Wet FENCY AN Term	Description Sands and gravels and Soils are darker than Soils exude free wat D DENSITY Undrained Shear Strength (kPa)	n in the dr ter. Sands	wing. Clays an y condition and and gravels te DCP blows per 100 mm	d silts may d may feel nd to cohe AS1726-199 Symbol	be brittle or fria cool. Sands and rre. 93 and HB160-20 Term	ble and po gravels te 006 Density Index (%)	owdery. nd to coh	ere. DCP blows per 100 mm	per 300 mm
Symbol D W CONSIST Symbol VS	Term Dry Moist Wet FENCY AN Term Very Soft	Description Sands and gravels al Soils are darker thar Soils exude free wat D DENSITY Undrained Shear Strength (kPa) 0 to 12	n in the dr ter. Sands SPT "N" 0 to 2	wing. Clays and y condition and and gravels te DCP blows per 100 mm <1	d silts may d may feel nd to cohe AS1726-199 Symbol VL	be brittle or fria cool. Sands and re. 93 and HB160-20 Term Very Loose	ble and po gravels te 006 Density Index (%) <15	owdery. nd to coh SPT "N" 0 to 4	ere. DCP blows per 100 mm <1	per 300 mm 0 to 2
Symbol D W CONSIST Symbol VS S	Term Dry Moist Wet FENCY AN Term Very Soft Soft	Description Sands and gravels and Soils are darker than Soils exude free wate D DENSITY Undrained Shear Strength (kPa) 0 to 12 12 to 25	n in the dr ter. Sands SPT "N" 0 to 2 2 to 4	wing. Clays an y condition and and gravels te DCP blows per 100 mm <1 <1	d silts may d may feel nd to cohe AS1726-199 Symbol VL L	be brittle or fria cool. Sands and re. 93 and HB160-20 Term Very Loose Loose	ble and po gravels te 006 Density Index (%) <15 15 to 35	owdery. nd to coh SPT "N" 0 to 4 4 to 10	ere. DCP blows per 100 mm <1 1 to 2	per 300 mm 0 to 2 2 to 6
Symbol D W CONSIST Symbol VS S F	Term Dry Moist Wet FENCY AN Term Very Soft Soft Firm	Description Sands and gravels and Soils are darker than Soils exude free wate D DENSITY Undrained Shear Strength (kPa) 0 to 12 12 to 25 25 to 50	n in the dr ter. Sands SPT "N" 0 to 2 2 to 4 4 to 8	wing. Clays and y condition and and gravels te DCP blows per 100 mm <1 <1 <1 1 to 2	d silts may d may feel nd to cohe AS1726-199 Symbol VL L MD	be brittle or fria cool. Sands and re. 93 and HB160-20 Term Very Loose Loose Medium Dense	ble and pc gravels te 006 Density Index (%) <15 15 to 35 35 to 65	owdery. nd to coh SPT "N" 0 to 4 4 to 10 10 to 30	ere. DCP blows per 100 mm <1 1 to 2 2 to 3	per 300 mm 0 to 2 2 to 6 6 to 8

P	Client roject	: J1 : W : Re : Lo M	ROJECT DETAI 101127 ave Engineeri esidential Dev t 46 Mundijon undijong	ng Pty elopm	ent d	Northing (m): 6426624TP Width (m):Datum: MGA94Machine:Surface RL (m):Contractor			:RP Checked Date: 27/10/2011				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRIP Soil type, plasticity or particle charac secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH		
0.0 0.2 0.4	VE EX	0			SP	SAND (Topsoil): Medium to coa sub-rounded to sub-angular, d silt, abundant rootlets As above, pale brown, with som plasticity clay fines, no rootlets Clayey SAND: Medium to coars sub-rounded to sub-angular, g yellow-brown, 20-30% low to r	ark grey, trace me low se grained, rey-white and				0.0 0.2 0.4		
0.6 0.8 1.0	Σ						GP	plasticity clay fines GRAVEL: Fine to coarse grained gravel, with 10% medium plast CLAY		M-M	L-MD		0.6
1.2 1.4 1.6 1.8	ш		Disturbed Sample SA01-1		СН	Sandy CLAY/Clayey SAND: High pale grey and yellow-brown, 4			St		1.2 1.4 1.6 1.8		
2.0 2.2	H-M	1							3	Moderate to well cemented ferricrete in places from 2.0 m depth.	2.0		
2.4	2				SP	SAND: Medium to coarse grain sub-rounded to sub-angular, w low to medium plasticity clay f	vhite, some	3	MD		2.4		
2.6											2.6		
2.8						End of test pit at 2.5 m. Target depth. Water inflow at base of pit (2.5 m).					2.8		

P	Client roject	: J1 : W : Re : Lo M	ROJECT DETAI 101127 ave Engineeri sidential Deve t 46 Mundijon undijong	ng Pty elopm	ent Id	Easting (m): 403347CheckedNorthing (m): 6426097TP Width (mDatum: MGA94MachineSurface RL (m):Contracto):2 TP Length (m): e:Komatsu WB 97R Bucket:Toothed r:Erskine EM Operator:James			
(m)	EXCAVATION RESISTANCE	SROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRIPT Soil type, plasticity or particle charac secondary and minor comp	teristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH	
.0 .2 .4	VE	0				0	SAND (Topsoil): Medium to coa sub-rounded to sub-angular, da silt fines, abundant rootlet As above, white, no fines, no ro	ark grey, trace	M-M	MD L		0.0
.6		SP	As above, brown, with weakly of sections		T		0.6					
.8 .0			As above, yellow-brown, no ce trace low plasticity clay fines	mentation,		T-VL		1.0				
2 4 6 8		•						M	L-MD		1.2 1.4 1.6	
0 2 4					SC	Clayey SAND: Medium to coars sub-rounded to sub-angular, pa yellow-brown, 10-15% low to n plasticity clay fines	ale grey and			Estimated depth due to hole collapse.	2.0	
.6											2.6	
2.8						End of test pit at 2.5 m. Stopped due to hole collapse. Water inflow at approximately 1.4 m.					2.8	

P	Client roject cation	: J1 : W : Re : Lo M	ROJECT DETAII 101127 ave Engineerin esidential Deve t 46 Mundijor undijong	ng Pty I elopme	nt	Surface RL (m): Contractor:			RP Checked Date: 27/10/2011 :0.6 TP Length (m): :Komatsu WB 97R Bucket: Toothed				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIP Soil type, plasticity or particle charac secondary and minor comp	teristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH		
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.4 2.6 2.8	VE		ASS Samples taken at 0.5 m intervals		SP	SAND (Topsoil): Medium to coa sub-rounded to sub-angular, d silt fines, abundant rootlets As above, white, no fines, no ro and the sub-root set of the set	ootlets	M-M	I-MD	Hole collapse.	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.4 2.6 2.8		
						End of test pit at 2.5 m. Target depth. Water inflow between 1.0 m and 1.5 r	n						

P	Client roject	: J1: : W: : Re : Lo M	COJECT DETAIL 101127 ave Engineerin sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent ad	Surface RL (m): Contractor:			:RP Checked Date: 27/10/2013				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRI Soil type, plasticity or particle chan secondary and minor con	acteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH		
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	VE				SP	SAND (Topsoil): Medium to c sub-rounded to sub-angular, silt fines, abundant rootlets As above, pale brown, no silt As above, yellow-brown, trac clay fines	dark grey, trace no rootlets e low plasticity	W-W	7-17		0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.4 1.6 1.8 2.0 2.2 2.4		
2.6											2.6		
2.8						End of test pit at 2.5 m. Target depth. Inferred ferricrete at Water inflow at 2.5 m.	base.				2.8		

Ρ	Client roject	: J1 : W : Re : Lo M	ROJECT DETAIL 101127 ave Engineerin esidential Deve ot 46 Mundijor undijong	ng Pty elopm	ent d	Surface RL (m): Contractor:		:RP Checked Date: 27/10/2011 :2 TP Length (m): :Komatsu WB 97R Bucket: Toothed :Erskine EM Operator: James			
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCR Soil type, plasticity or particle cha secondary and minor co	racteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4 0.6 0.8 1.0	VE		ASS Samples taken at 0.5 m intervals		SP	SAND (Topsoil): Medium to sub-rounded to sub-angular silt fines, trace rootlets As above, white, no fines, no	dark grey, trace	M	Γ		0.0 0.2 0.4 0.6 0.8 1.0
1.4 1.6 1.8 2.0 2.2			Disturbed Sample SA05-1		sc	Clayey SAND: Medium to co sub-rounded to sub-angular mottled yellow-brown, 15-3 plasticity clay fines varying v	, pale grey 0% medium	M-M		Hole collapse.	1.4 1.6 1.8 2.0 2.2 2.4
2.6											2.6
2.8						End of test pit at 2.0 m. Stopped due to hole collapse. Water inflow between 1.0 m and 1	5 m				2.8

		PF	ROJECT DETAI	LS		SPATIAL DETAILS		D	RILLI	NG DETAILS						
P	Client roject	: W : Re : Lc	101127 'ave Engineeri esidential Deve ot 46 Mundijor undijong	elopm	ent d	Position: See PlanLogged:Easting (m): 403055Checked:Northing (m): 6426703TP Width (m):Datum: MGA94Machine:Surface RL (m):Contractor:			RP Checked Date: 27/10/2011 Co.6 TP Length (m): Komatsu WB 97R Bucket: Toothed							
(m)	EXCAVATION RESISTANCE	SROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIP Soil type, plasticity or particle chara secondary and minor com	TION cteristics, colour,	MOISTURE	CONSISTENCY/	Operator: James ADDITIONAL OBSERVATIONS	DEPTH					
0.0 0.2		GF			ASS Samples taken at 0.5 m intervals	taken at 0.5		<u> </u>	SAND (Topsoil): Medium to co sub-rounded to sub-angular, d silt fines, abundant rootlets As above, pale brown, no fines	arse grained, ark grey, trace		L		0.0		
).4).6	VE	•	taken at 0.5	taken at 0.5			taken at 0.5	taken at 0.5	taken at 0.5	taken at 0.5	amples at 0.5		Gravelly SAND: Medium to coa sub-rounded to sub-angular, g mottled yellow-brown, 20-409 coarse grained ferricrete grave	rey-white 6 fine to	M	
).8 1.0 1.2	Σ				SC	Clayey SAND: Medium to coarse grained, sub-rounded to sub-angular, pale blue mottled yellow-brown and blue-green, ~20% medium plasticity clay fines, with 20-40% fine to coarse grained ferricrete GRAVEL increasing with depth		1	MD		0.8 1.(1.;					
1.4	т			0000	GP	GRAVEL: Fine to coarse graine with 20% Clayey SAND, some o					1.4					
1.6											1.					
1.8											1.1					
2.0											2.0					
2.2											2.:					
2.6											2.0					
2.8						End of test pit at 1.5 m. Refusal on Ferricrete. Water inflow at approximately 0.5 m.					2.8					

sheets for detials of abbreviations and basis of descriptions

P	Client roject	: J1 : W : Re : Lo M	ROJECT DETAI 101127 ave Engineeri ssidential Dev t 46 Mundijon undijong	ing Pty elopm	ent Id	Northing (m): 6426626TP Width (m):Datum: MGA94Machine:Surface RL (m):Contractor:			:RP Checked Date: 27/10/2011				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRIP Soil type, plasticity or particle chara secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH		
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0	VE				SP	SAND (Topsoil): Medium to co sub-rounded to sub-angular, d silt fines, abundant rootlets As above, pale brown, no fines Clayey SAND: Medium plastici grey-green mottled yellow-bro to coarse sub-rounded to sub- becoming sandier with depth	ty fines, pwn, medium	M	N-L	Estimated depth due to hole collapse.	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0		
2.2											2.2		
2.4											2.4		
2.6											2.6		
2.8						End of test pit at 2.0 m. Stopped due to hole collapse. Water inflow at approximately 0.5 m.					2.8		

Ρ	Client roject	: J1 : W : Re : Lo M	ROJECT DETAII 101127 ave Engineerin sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent ad	SPATIAL DETAILS Position: See Plan Easting (m): 403662 Northing (m): 6426565 Datum: MGA94 Surface RL (m):	Logged Checked TP Width (m) Machine Contractor	:HWC :RP :0.6 :Koma	atsu W ne EM	NG DETAILS Logged Date: 03/10 Checked Date: 27/10 TP Length (m): /B 97R Bucket: Tooth Operator: James	/2011 ed
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIP Soil type, plasticity or particle chara secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	VE		ASS Samples taken at 0.5 m intervals		SP	SAND (Topsoil): Medium to co sub-rounded to sub-angular, o silt fines, abundant rootlets As above, white, no fines, no r As above, brown As above, pale brown Clayey SAND: Medium to coar sub-rounded to sub-angular, g mottled yellow-brown, 15% lo	lark grey, trace rootlets se grained, grey-white ww to medium	M-M	MD L-MD	Hole collapse.	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
2.6 2.8						End of test pit at 2.0 m.					2.6
						Refusal on Ferricrete. Water inflow at approximately 0.6 m					

P	Client: roject: cation:	J1: W Re Lo	COJECT DETAIL 101127 ave Engineeri sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent Id	SPATIAL C Position: Se Easting (m): 40 Northing (m): 64 Datum: M Surface RL (m):	e Plan 3508 26446	Logged Checked TP Width (m) Machine Contractor	:HWC :RP :2 :Koma	ntsu W ne EM	NG DETAILS Logged Date: 03/10/ Checked Date: 27/10/ TP Length (m): /B 97R Bucket: Toothe Operator: James	2011
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MAT Soil type, plasticit seconda	ERIAL DESCR y or particle cha ry and minor co	racteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.4 1.4 1.6 1.8 2.0 2.2 - 2.4 - 2.4	VE				SP	SAND (Topsoil): sub-rounded to silt fines, abund As above, white As above, pale b clay fines	sub-angular, ant rootlets , no fines, nc prown, trace	dark grey, trace	M-M	NL VL	Estimated depth due to hole collapse.	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
2.8						End of test pit at 1.						2.8
						Stopped due to hol Groundwater not e						

Ρ	Client roject cation	: J1 : W : Re : Lo M	ROJECT DETAIL 101127 ave Engineeri sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent id S	Datum: MGA94 urface RL (m):	Contractor	:HWC :RP :0.6 :Koma :Erskir	ntsu V ne EM	NG DETAILS Logged Date: 04/10/ Checked Date: 27/10/ TP Length (m): /B 97R Bucket: Toothe Operator: James	⁄2011 ≘d	
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIPTION Soil type, plasticity or particle characteris secondary and minor component	tics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH	
.0 .2 .4		ASS Samples taken at 0.5			SP	SAND: Medium to coarse grained, sub-rounded to sub-angular, dark silt fines, abundant rootlets to 0.1				Slight sulphur odour	0.0 0.2 0.4	
6 8 0					sc- ci/ch	Clayey SAND/Sandy CLAY: Medium plasticity fines, olive grey mottled yellow-brown, medium to coarse sub-rounded to sub-angular sand, sandier with depth				while excavating	0.1 0.1	
2 4 8	VE					SC	Clayey SAND: Medium plasticity fin blue-green mottled yellow-brown, to coarse sub-rounded to sub-ang becoming sandier with depth	medium	M-M	L-MD		1. 1. 1.
2.0 2.2 2.4											2.	
2.8						End of test pit at 2.4 m. Target depth. Water inflow at 0.1 m.					2.	

Pi	Client roject cation	II W Re Lo M	ROJECT DETAI 101127 ave Engineeri sidential Deve t 46 Mundijor undijong	ng Pty elopme	ent d	SPATIAL DETAILS Position: See Plan Easting (m): 403425 Northing (m): 6426507 Datum: MGA94 Surface RL (m):	Logged Checked TP Width (m) Machine Contractor	:HWC :RP :0.6 :Koma	atsu WI ne EM	G DETAILS Logged Date: 03/10 Checked Date: 27/10 TP Length (m): 3 97R Bucket: Tooth Operator: James)/2011 ied
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCR Soil type, plasticity or particle cha secondary and minor co	racteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4 0.6 0.8			ASS Samples taken at 0.5 m intervals		SP	SAND (Topsoil): Medium to c sub-rounded to sub-angular, silt fines, abundant rootlets As above, pale brown, no fin	dark grey, trace				0.0 0.2 0.4 0.6
1.0	VE				SC	Clayey SAND: Medium to coa sub-rounded to sub-angular, yellow-brown, 20-30% low to plasticity clay fines	grey-white and	M-M	NL-L		1.0
1.4 1.6 1.8 2.0 2.2				000000000000000000000000000000000000000	GC	GRAVEL: Fine to coarse grain a Clayey SAND (as above) ma (approximately 40%)					1.4 1.6 1.8 2.0 2.2
2.4 2.6 2.8		-		000000		End of test pit at 2.6 m. Target depth.					2.4

P	Client roject cation	: J1 : W : Re : Lo M	ROJECT DETAIL 101127 ave Engineerin sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent d	SPATIAL DETAILS Position: See Plan Easting (m): 403397 Northing (m): 6426365 Datum: MGA94 Surface RL (m):	Checked TP Width (m) Machine	n):0.6 TP Length (m): ne:Komatsu WB 97R Bucket:Toothed or:Erskine EM Operator:James				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIP Soil type, plasticity or particle chara secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH	
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	VE				SP	SAND: Medium to coarse grain sub-rounded to sub-angular, c silt fines, abundant rootlets to Clayey SAND: Medium to coar sub-rounded to sub-angular, g yellow-brown, 20-30% low to plasticity clay fines, some ferr nodules 5-15 mm in size	lark grey, trace 0.1 m se grained, grey-white and medium	M-M	T-MD VI-T	Hole collapse.	0.0 0.2 0.4 0.6 1.6 1.2 1.4 1.6 1.8 2.6 2.2 2.4	
2.6											2.6	
2.8	-					End of test pit at 2.5 m. Target depth. Water inflow at 2.0 m.					2.5	

Ρ	Client roject cation	II: W Re Lo M	ROJECT DETAI 101127 ave Engineeri sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent d	SPATIAL DETAILS Position: See Plan Easting (m): 403297 Northing (m): 6426442 Datum: MGA94 Surface RL (m):	Logged Checked TP Width (m) Machine Contractor	:HWC :RP :0.6 :Koma	atsu Wi ne EM	G DETAILS Logged Date: 03/10 Checked Date: 27/10 TP Length (m): B 97R Bucket: Tooth Operator: James)/2011 ned
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRIP Soil type, plasticity or particle chara secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
).0).2).4				SP	SAND (Topsoil): Medium to co sub-rounded to sub-angular, o silt fines, abundant rootlets As above, pale brown, no silt,	lark grey, trace		Ţ		0.0 0.2 0.4 0.6	
).8 1.0 1.2 1.4	VE	VE	Disturbed Sample SA13-2			Clayey SAND: Medium to coar sub-rounded to sub-angular, g yellow-brown, 20-30% low to plasticity clay fines	grey-white and	M-M			0.8 1.0 1.2
1.6 1.8				In situ sample SA13-1		SC	As above, olive grey and yello predominantly, ~30% mediun fines			MM	
2.0										2.0	
2.4	I					FERRICRETE					2.4
2.6											2.(
2.8						End of test pit at 2.5 m. Target depth. Water inflow at approximately 0.7 n	1.				2.8

Ρ	Client roject	II W Re Lo	COJECT DETAI 101127 ave Engineeri sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent d	SPATIAL DETAILS Position: See Plan Easting (m): 403249 Northing (m): 6426344 Datum: MGA94 Surface RL (m):	Logged Checked TP Width (m) Machine Contractor	:HWC :RP :0.6 :Koma	atsu W ne EM	NG DETAILS Logged Date: 03/10 Checked Date: 27/10 TP Length (m): /B 97R Bucket: Tooth Operator: James)/2011 ed
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRIF Soil type, plasticity or particle chara secondary and minor con	acteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4 0.6 0.8 0.8 0.8 0.8 0.8 0.2 1.4 1.6 1.8 2.0 2.2 2.2	VE				SP	SAND (Topsoil): Medium to co sub-rounded to sub-angular, o silt fines, abundant rootlets As above, pale brown, no silt, Clayey SAND: Medium to coal sub-rounded to sub-angular, p yellow-brown, ~15% low to m plasticity clay fines, with incre content in parts, with some fe nodules (5-15 mm in size)	dark grey, trace no rootlets 'se grained, grey-white and edium eased clay	M-W	C-MD	Hole collapse.	0.0 0.2 0.4 0.6 1.0 1.2 1.4 1.4 1.6 1.8 2.0 2.2 2.4
2.6	т								MD		2.
2.8											2.8
						End of test pit at 2.7 m. Target depth. Water inflow at approximately 0.7 r	n.				

P	Client: roject: cation	: J1 : W : Re : Lo M	ROJECT DETAI 101127 ave Engineeri esidential Dev t 46 Mundijon undijong	ng Pty elopm	ent d	SPATIAL DETAILS Position: See Plan Easting (m): 403274 Northing (m): 6426582 Datum: MGA94 Surface RL (m):	Logged Checked TP Width (m) Machine Contractor	:HWC :RP :0.6 :Koma	atsu Wi ne EM	G DETAILS Logged Date: 04/10 Checked Date: 27/10 TP Length (m): B 97R Bucket: Tooth Operator: James	/2011 ed
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRIF Soil type, plasticity or particle chara secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4	VE				SP	SAND (Topsoil): Medium to co sub-rounded to sub-angular, o silt fines, abundant rootlets As above, pale brown, no silt,	lark grey, trace	,			0.0 0.2 0.4
D.6 D.8 1.0			Sample		SC	Clayey SAND: Medium to coar sub-rounded to sub-angular, mottled yellow-brown, ~20-30 plasticity clay fines, with fines increasing in parts	grey-white)% medium	M-M	L-MD		0.6
1.2 1.4				· · · · · · · · · · · · · · · · · · ·		Sandy GRAVEL: Fine to mediu ferricrete, brown, with ~20% coarse grained sand,			-		1.2
1.6	Σ I			GP	GRAVEL: Fine to coarse graine gravel, pale brown and olive g Clayey SAND/Sandy CLAY bec cemented	rey, with 20%	N			1.6	
1.8 2.0										- 2.0	
2.2											2.2
2.4											2.4
2.6											2.6
2.8						End of test pit at 2.0 m. Refusal on Ferricrete. Water inflow at 1.8 m.					2.8

Ρ	Client roject cation	: J1: : W : Re : Lo M	ROJECT DETAI 101127 ave Engineeri esidential Dev t 46 Mundijon undijong	ng Pty elopm	ent d	SPATIAL DETAILS Position: See Plan Easting (m): 403225 Northing (m): 6426705 Datum: MGA94 Surface RL (m):	Contractor	:HWC :RP :0.6 :Koma :Erskir	itsu W ne EM	G DETAILS Logged Date: 04/10 Checked Date: 27/10 TP Length (m): B 97R Bucket: Tooth Operator: James)/2011 ned
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRI Soil type, plasticity or particle char secondary and minor con	acteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4 0.6	H VE		Sample SA16-1		SP SC	SAND (Topsoil): Medium to co sub-rounded to sub-angular, silt fines, abundant rootlets As above, pale brown, no silt, Clayey SAND: Medium to coa olive grey mottled yellow-bro medium to high plasticity clay becoming ferruginised from C (moderately to well cemented	dark grey, trace no rootlets se grained, wn, 40-50% fines, .6 m	M-M	т.		0.0 0.2 0.4 0.6
0.8	-		In situ sample						_		0.8
1.0 1.2 1.4 1.6 2.0 2.2 2.2	T										1.0 1.2 1.4 1.4 1.6 1.8 2.0 2.2 2.4 2.4 2.6
2.8						End of test pit at 0.7 m. Refusal on Ferricrete. Groundwater not encountered.					2.8

Ρ	Client roject	: J1 : W : Re : Lo M	ROJECT DETAI 101127 ave Engineeri sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent d	Easting (m): 403139 Ch Northing (m): 6426814 TP Wid Datum: MGA94 Mi Surface RL (m): Cont	ecked:F th (m):2 achine:F	n):2 TP Length (m): ne:Komatsu WB 97R Bucket:Toothed or:Erskine EM Operator:James					
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIPTION Soil type, plasticity or particle characteristics, co secondary and minor components	olour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH		
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0	VE		ASS Samples taken at 0.5 m intervals		SP	SAND: Medium to coarse grained, sub-rounded to sub-angular, dark grey, silt fines, abundant rootlets to 0.1 m As above, brown, with some weakly cemented nodules (5-15 mm), trace low plasticity clay fines, no rootlets As above, yellow-brown, no cementatic	/	W	NL-L		0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.4 1.6 1.8 - 2.0		
2.2											2.2		
2.4											2,4		
2.6											2.6		
2.8						End of test pit at 2.0 m. Stopped due to hole collapse. Water inflow at approximately 1.0 m.					2.8		

Ρ	Client roject	: J1 : W : Re : Lo M	ROJECT DETAIL 101127 ave Engineerin esidential Deve of 46 Mundijor undijong	ng Pty elopm	ent d	SPATIAL DETAILS Position: See Plan Easting (m): 403534 Northing (m): 6426114 Datum: MGA94 Surface RL (m):	Logged Checked TP Width (m Machine Contracto	l:RP l:RP):0.6 e:Koma	itsu V ne EN	NG DETAILS Logged Date: 03/10/ Checked Date: 27/10/ TP Length (m): /B 97R Bucket: Toothe Operator: James	/2011
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRI Soil type, plasticity or particle char secondary and minor cor	acteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 0.2 0.4 0.6 0.8	E E E E E E E E E E E E E E E E E E E				SP	SAND: Medium to fine graine m, becoming pale grey, with plasticity clay fines Clayey SAND: Medium to fine 20-30% medium plasticity cla frequent ferruginised nodule broken with fingers)	grained, with y fines, with		NL NL	Topsoil with abundant rootlets to 0.1 m.	0.0 0.2 0.4 0.6 0.8
1.2 1.4 1.6 1.8			ASS Samples taken at 0.5 m intervals		sc			M	S-F		1.: 1.4 1.1 1.3
2.2	Σ					As above, but generally more	cemented		St		2.2
2.6 2.8											2.6
						End of test pit at 2.5 m. Target depth. Water inflow at 0.4 m and 1.5 m.					

P	Client roject	: J1: : W: : Re : Lo M	OJECT DETAII 101127 ave Engineerin sidential Deve t 46 Mundijor undijong	ng Pty elopm	ient ad	SPATIAL DETAILS Position: See Plan Easting (m): 403550 Northing (m): 6426328 Datum: MGA94 Surface RL (m):	Logged Checked TP Width (m Machine Contracto	1:RP 1:RP):0.6 e:Koma	itsu Wi ne EM	G DETAILS Logged Date: 03/10 Checked Date: 27/10 TP Length (m): B 97R Bucket: Tooth Operator: James)/2011 ned
DEPTH (m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIP Soil type, plasticity or particle charac secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH
0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.2 - 1.4 - 1.4 - 1.6 - 1.8 - 2.0 - 2.2 - 2.4 - 2.4					SP	Clayey SAND: Medium to fine ~20% medium plasticity clay fi mottled orange, with weakly f nodules	trace fines grained, with nes, grey	M	F VL		0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.4 2.4
2.8											2.8
	1		1			End of test pit at 2.6 m. Refusal on moderately cemented Fer Groundwater not encountered.	icrete nodules.				

		DE	OJECT DETAIL	S		SPATIAL DETAILS		Г	RILLI	NG DETAILS			
Job Number: J1101127 Client: Wave Engineering Pty Ltd Project: Residential Development Location: Lot 46 Mundijong Road Mundijong					ent id	Position: See PlanLoggerEasting (m): 403661CheckerNorthing (m): 6426295TP Width (mDatum: MGA94Machin			d:RP Checked Date: 27/10/2013				
DEPTH (m)	EXCAVATION RESISTANCE	SROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCR Soil type, plasticity or particle cha secondary and minor co	racteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH		
0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.2 - 1.4 - 1.6 - 1.8 - 2.0 - 2.2 - 2.4 - 2.4 - 2.6			ASS Samples taken at 0.5 m intervals		SP	SAND: Medium grained, blac becoming pale grey, trace fir As above, brown becoming o	nes	M	٨٢	Topsoil to 0.1 m.	0.0 0.2 0.4 0.4 0.6 0.8 1.0 1.2 1.4 1.4 1.6 1.8 2.0 2.2 2.4 2.4 2.6		
2.8						End of test pit at 2.0 m. Stopped due to hole collapse. Groundwater not encountered.					2.8		

PROJECT DETAILS Job Number: J1101127 Client: Wave Engineering Pty Ltd Project: Residential Development Location: Lot 46 Mundijong Road Mundijong								:RP Checked Date: 27/10/2011				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIF Soil type, plasticity or particle chara secondary and minor con	acteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH	
0.0 0.2 0.4	EXCA RESI	GR			SP	SAND: Medium to fine graine becoming pale yellow-grey, w plasticity clay fines Clayey SAND/Sandy CLAY: Con	d, dark grey ith ~10% low	-		Black topsoil to 0.1 m.	0.0	
0.6 0.8 1.0 1.2 1.4 1.6					SC- CI/Cł	and fine grained, with 40-60% high plasticity fines, pale grey scattered weakly ferruginised	medium to and orange,	M	٨٢		0.6 0.8 1.0 1.2 1.4 1.6	
2.0 2.2 2.4		•			GC	Clayey GRAVEL: Medium to fi moderately cemented ferricr a matrix (40%) of Clayey SAN	ete nodules in				2.0 2.2 - 2.4	
2.6											2.6	
2.8				<u> </u>		End of test pit at 2.4 m. Near refusal. Water inflow (slow seepage) at 2.1 n					2.8	

PROJECT DETAILS Job Number: J1101127 Client: Wave Engineering Pty Ltd Project: Residential Development Location: Lot 46 Mundijong Road Mundijong						Surface RL (m): Contractor		d:RP Checked Date: 27/10/2011				
(m)	EXCAVATION RESISTANCE	SROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS	MATERIAL DESCRIF Soil type, plasticity or particle char secondary and minor con	acteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH	
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.4			ASS Samples taken at 0.5 m intervals		SP	SAND: Medium grained, black becoming pale yellow-grey ar Clayey SAND: Medium graine mottled pale orange, 20% me fines As above, with occasional we ferricrete nodules	d yellow d, pale grey dium plasticity	M			0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.4 1.6 1.8 2.0 2.2 2.4 2.4	
2.8						End of test pit at 2.6 m. Collapse. General seepage below 0.6 m.					2.8	

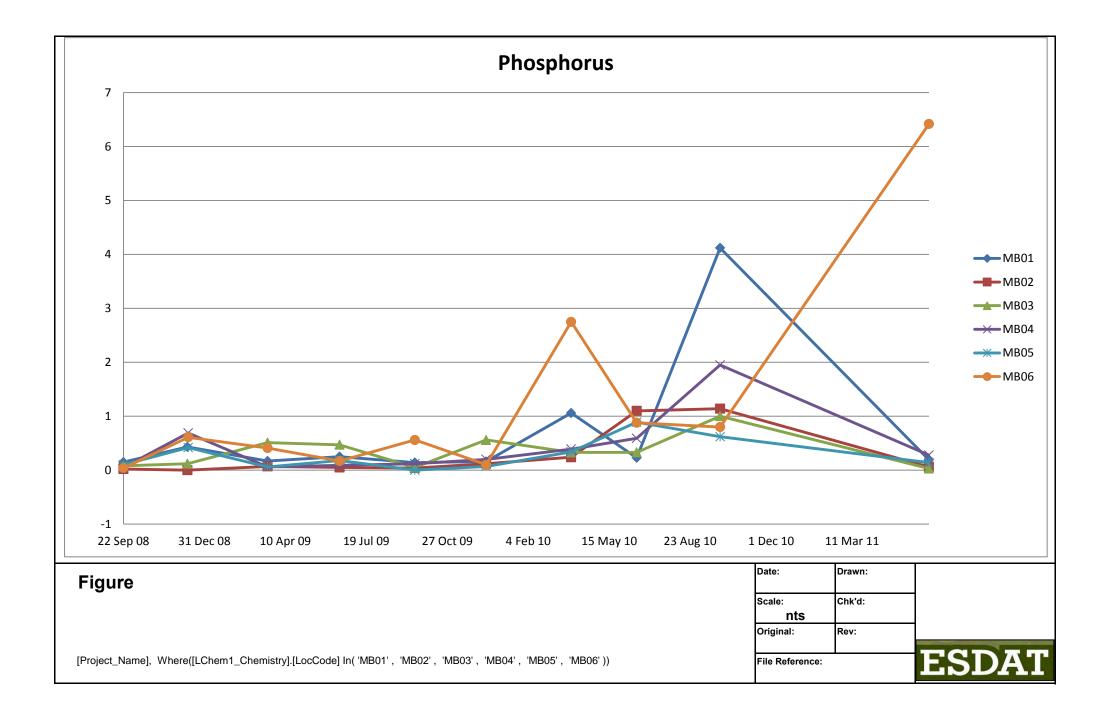
								d:RP Checked Date: 27/10/2011				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIF Soil type, plasticity or particle chara secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH	
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.2 2.2					SP	SAND: Medium grained, layer grey and orange yellow, trace Clayey SAND: Medium to fine occasionally mottled yellow o low to medium plasticity fines As above, with ferricrete nod base	fines grained, grey range, 20%	M	٨٢	Black topsoil to 0.1 m.	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.4 2.6	
2.8											2.8	
					11	End of test pit at 2.6 m. Collapse below 0.2 m. General seepage below 0.4 m.						

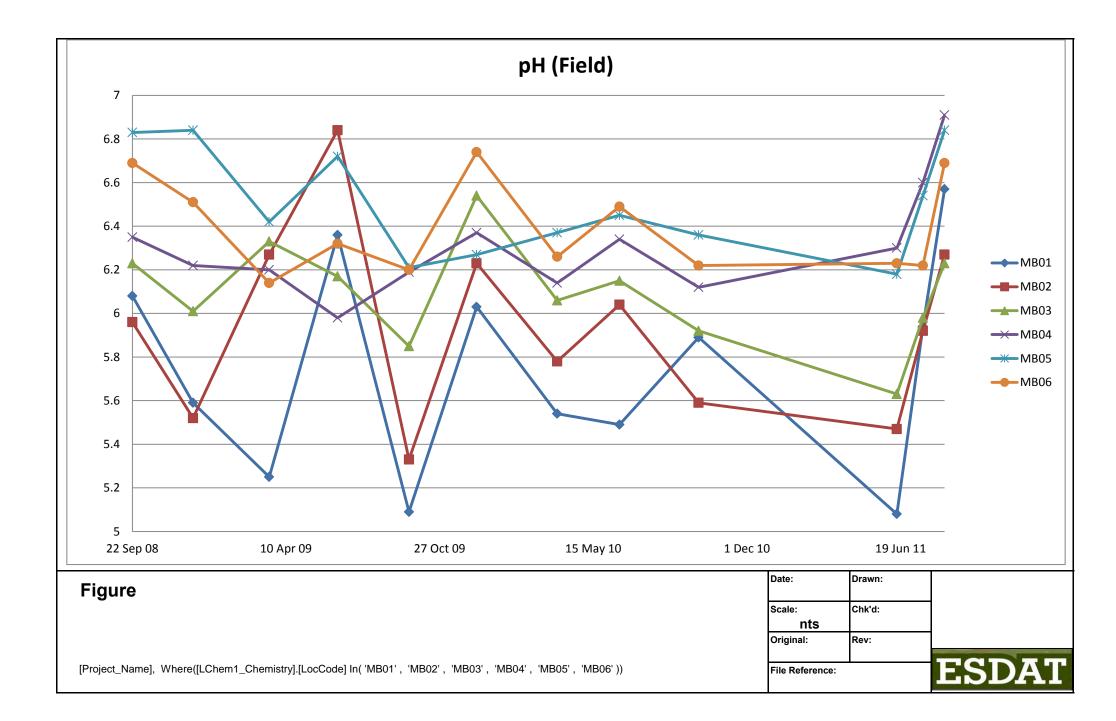
Ρ	Client roject	: J1: : W : Re : Lo M	OJECT DETAI 101127 ave Engineeri sidential Deve t 46 Mundijor undijong	ng Pty elopm	ent d S				d:RP Checked Date: 27/10/2011				
(m)	EXCAVATION RESISTANCE	GROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIF Soil type, plasticity or particle chara secondary and minor con	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH		
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2					SP	SAND: Medium grained, black becoming pale grey and yello Clayey SAND: Medium graine orange, 20% medium to low p	w, trace fines d, grey stained	M			0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2		
2.4		-									2.4		
2.8						End of test pit at 2.5 m. Target depth. Continual collapse du Seepage below 0.6 m.	ing excavation.				2.8		

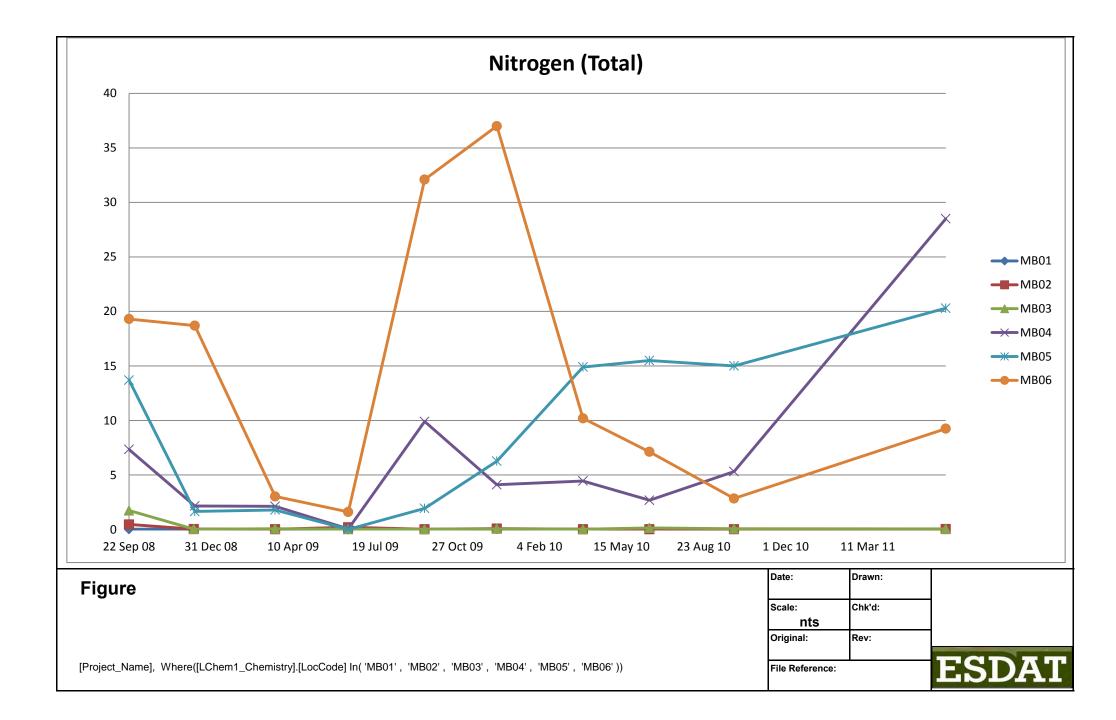
						SPATIAL DETAILSPosition: See PlanLogged: FEasting (m): 403143Checked: FNorthing (m): 6246433TP Width (m): 2Datum: MGA94Machine: KSurface RL (m):Contractor: E		:RP Checked Date: 27/10/2013 :2 TP Length (m): :Komatsu WB 97R Bucket: Toothed				
(m)	EXCAVATION RESISTANCE	SROUNDWATER	SAMPLES & FIELD TESTS	GRAPHIC LOG	USCS CLASSIFICATION	MATERIAL DESCRIF Soil type, plasticity or particle chara secondary and minor com	cteristics, colour,	MOISTURE	CONSISTENCY/ DENSITY	ADDITIONAL OBSERVATIONS	DEPTH	
0.0	0 2 2					SAND: Medium to coarse grai sub-rounded to sub-angular, o silt fines, abundant rootlets As above, no fines, no rootlet:	lark grey, trace		-		0.0	
0.6 0.8											0.6	
1.0	VE			ASS Samples taken at 0.5 m intervals		SP			M-M	MD		1.0
1.4 1.6						As above, brown, with weakly nodules (5-15 mm in size) As above, white, no nodules	cemented				1.4 1.6	
1.8											1.8	
2.0					SC	Clayey SAND: Medium to coar sub-rounded to sub-angular, p mottled yellow-brown, 10-15 medium plasticity clay fines, b ferruginised with depth	oale grey % low to				- 2.0	
2.4											2.4	
2.6											2.6	
2.8					-	End of test pit at 2.0 m. Stopped due to hole collapse. Groundwater not encountered.					2.8	

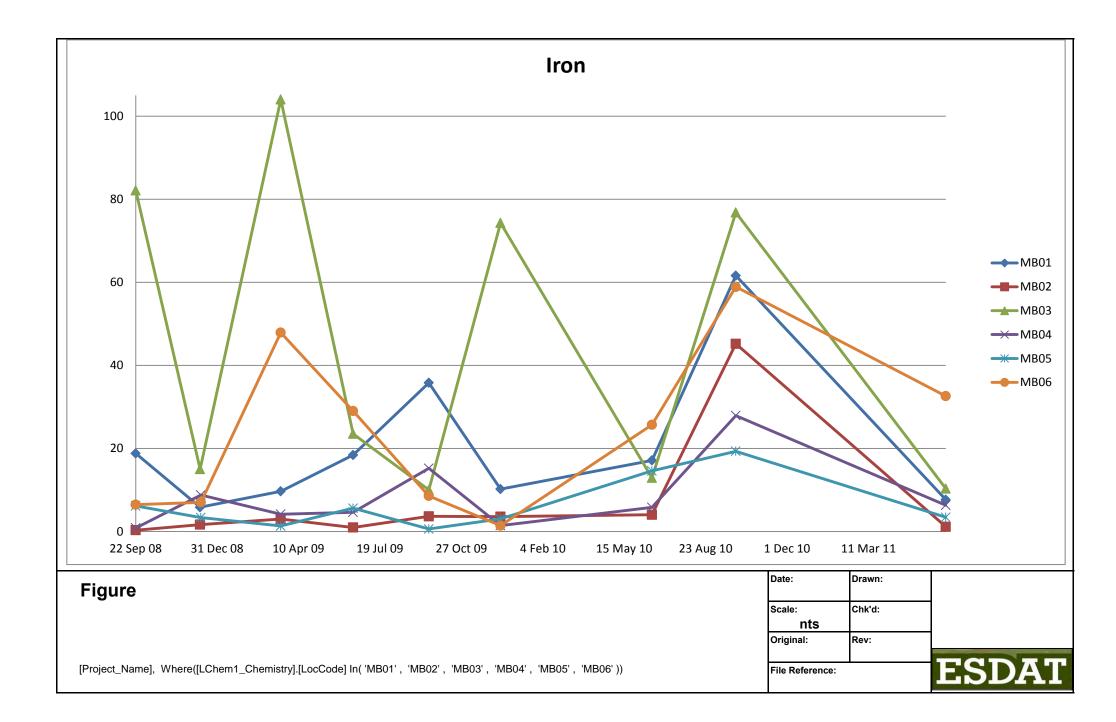
www.waveinternational.com

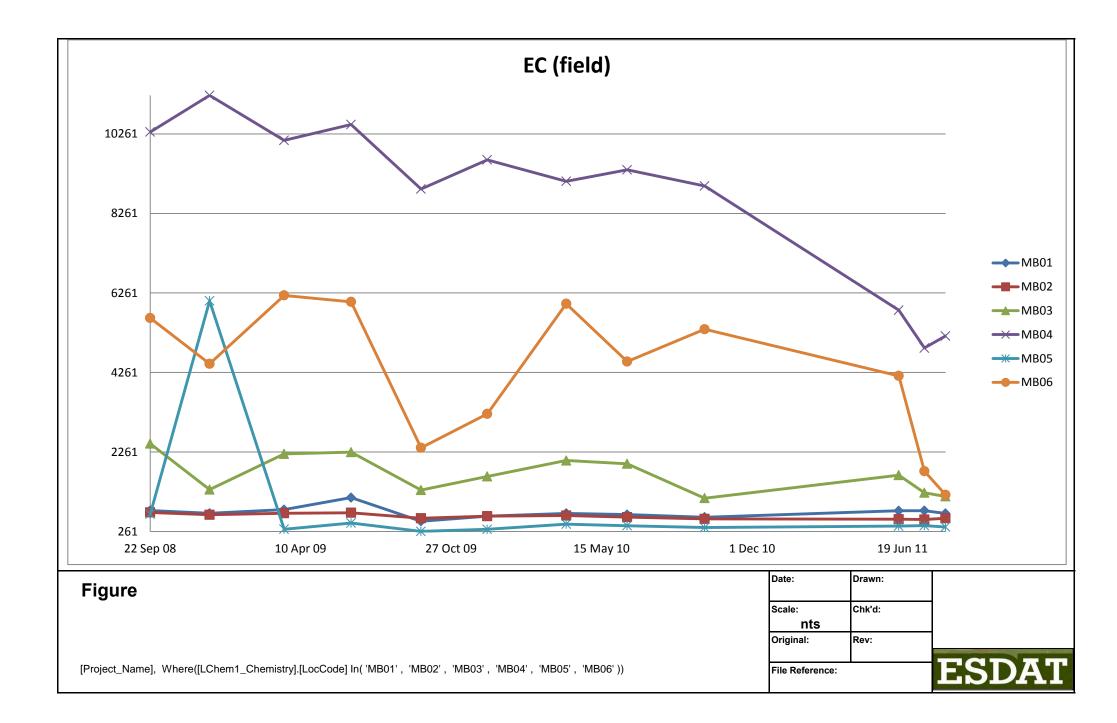
APPENDIX B - Pre-development groundwater monitoring data

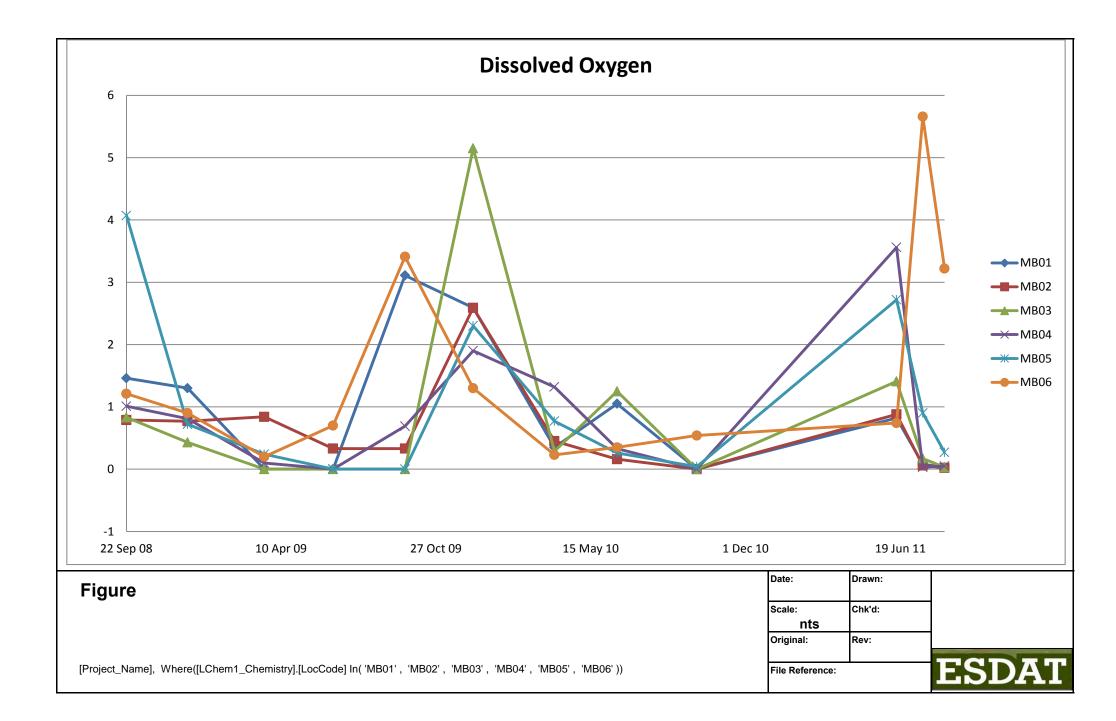

engineering project management environment

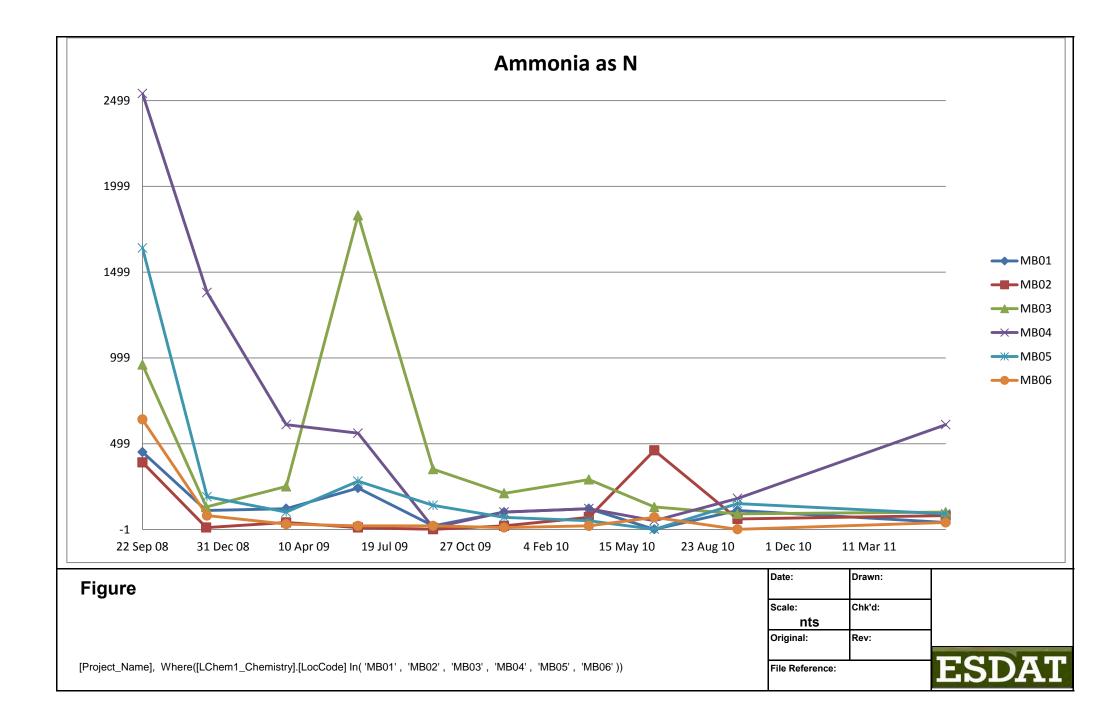

						typi	cal winter (hi	gh) water leve	ls	_	typica	al summer (lov	w) water leve
			NSL (from										
	Easting	Northing	LiDAR)	DoW avg max GWL =	17.0		GWL	mBGL	NSL			GWL	mBGL
MB01	403631	6426722	28.3	DoW reading @ 14-Oct-09 =	16.7	MB01	27.9	0.4	28.3		MB01	27.1	1.2
MB02	403315	6426824	26.7			MB02	26.6	0.1	26.7		MB02	25.8	0.9
MB03	403018	6426687	25.5	adjustment to Oct-09 GWLs =	0.3	MB03	25.2	0.3	25.5		MB03	24.2	1.3
MB04	403299	6426476	27.0			MB04	26.2	0.8	27		MB04	24.9	2.1
MB05	403293	6426143	27.8	DoW avg min GWL =	15.7	MB05	27.0	0.8	27.8		MB05	25.6	2.2
MB06	403609	6426332	29.9	DoW reading @ 5-May-09 =	15.3	MB06	29.1	0.8	29.9		MB06	27.2	2.7
										-			
				(from DoW						I			
DoW bore T270	401401	6429300	16.7	records) adjustment to Apr-09 GWLs =	0.4	DoW bore T270	17.0	-0.3	16.7		DoW bore T270	15.7	1.0


mAHD - corrected GWL data (= emerson stewart mAHD data MINUS casing height)

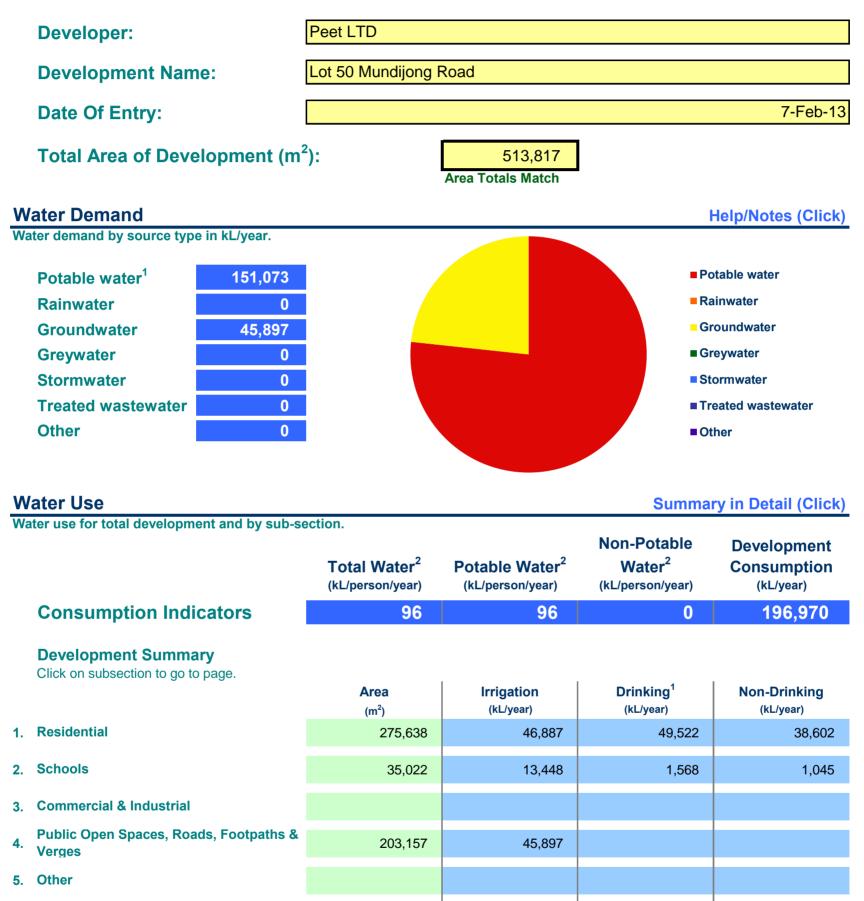

	22-Sep-08	21-Oct-08	18-Nov-08	11-Dec-08	20-Jan-09	20-Feb-09	19-Mar-09	24-Apr-09	25-May-09	16-Jun-09	15-Jul-09	14-Aug-09	17-Sep-09	09-Oct-09	18-Nov-09	14-Dec-09	19-Jan-10	23-Feb-10	29-Mar-10	18-Jun-10	26-Jul-10	24-Aug-10	29-Sep-10	14-Jun-11	18-Jul-11	15-Aug-1
MB01	27.661	27.451	27.381	27.301	27.091	26.921	26.841	26.731	26.851	26.941	27.611	27.941	27.941	27.611	27.298	27.19	27.02	26.866	26.934	27.234	27.576	27.494	27.226	27.006	27.562	27.845
MB02	26.36	26.11	26.04	25.97	25.65	25.49	25.44	25.39	25.53	25.67	26.34	26.55	26.65	26.33	26.052	25.808	25.549	25.473	25.57	25.972	26.253	26.295	25.947	25.737	26.32	26.55
MB03	24.791	24.591	24.481	24.441	24.161	24.011	23.931	23.831	23.991	24.211	24.891	25.081	25.071	24.881	24.007	24.345	24.165	24.03	24.103	24.574	24.788	24.806	24.477	24.33	24.869	25.027
MB04	25.677	25.607	25.507	25.427	25.097	24.907	24.747	24.547	24.477	24.617	26.237	26.547	26.487	25.867	26.004	25.418	25.179	24.966	24.846	25.708	26.239	26.067	25.645	25.798	26.482	26.537
MB05	26.554	26.364	26.234	26.124	25.814	25.634	25.454	25.214	25.004	25.044	26.354	27.044	27.114	26.674	26.242	26.178	26.038	25.866	25.842	25.926	26.336	26.326	26.114	25.659	26.494	26.991
MB06	28.569	28.419	28.279	29.059	27.839	27.439	27.069	26.789	26.719	26.819	28.539	29.129	29.159	28.809	28.317	28.192	27.809	27.279	27.024	27.225	28.234	28.146	27.746	26.848	28.389	29.066


vater levels						
mBGL	clay level					
1.2	26.9					
0.9	26.1					
1.3	24.9					
2.1	26.3					
2.2	26.4					
2.7	28.4					
1.0	n/a					



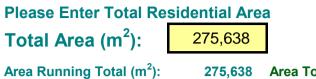


APPENDIX C - Water consumption estimates


engineering project management environment

Water Use Summary

The Water Use tool is primarily aimed at residential developments but can handle mixed developments.



TOTAL	513,817	106,233	51,090	39,647

¹ All drinking water needs are met by Potable water.

² These consumption indicators relate to the residential segment only.

1. Residential

275,638 Area Totals Match

Total Residential Water Use

Per Capita Summary
kL/Person/Year (Total) ¹
kL/Person/Year (Potable)
kL/Person/Year (in-house) ²
kL/Person/Year (ex-house)
kL/Person/Year (Non-Potable)
kL/Person/Year (in-house)
kL/Person/Year (ex-house)

96	
96	
55	
41	
0	
0	
0	

Summary Page (Click)

135,011
46,887
49,522
38,602
1,701
135,011
76,840
58,171
0
0
0

¹Total refers to Potable & Non-Potable Water ²See Parameter & Assumptions for in- & ex-house definitions

Residential Information

Help/Notes (Click) Multiple residency types are possible. Lots **Households** Area **Irrigation Area** Household Type (per Lot) (m²/Lot) (m²/Lot) Lifestyle/Semi Rural 18 1 1,619 194 **Traditional** 356 1 546 137 **Traditional** 88 1 345 86 \checkmark Cottage 1 272 68 80 **Apartment** 2 2,056 452

Water Sources

Summary Page (Click)

Summary Page (Click)

Select possible water sources and their contribution to Irrigation or Non-Drinking water use. Model only uses water source when check box is ticked.

	Select	Source Co	ntribution (%)	
Source	Source(s)	Irrigation	Non-Drinking	
Potable water		100	100	
Rainwater*		0	0	Apply Rainwater to:
Groundwater				Irrigation
Greywater				Non-drinking
Stormwater				
Treated wastewater				
Other		100		
TOTAL ALTERNATE		0	0	

Rainwater proportion calculated automatically and split between Irrigation and Non-drinking

2. Schools

Please Enter Total School Area 35,022

Total Area (m²):

Area Running Total (m²):

35,022 **Area Totals Match**

Total Schools Water Use

Per Year Summary

kL/Year (Total) ¹	16,061
kL/Year (Irrigation)	13,448
kL/Year (Drinking)	1,568
kL/Year (Non-Drinking)	1,045
kL/ha/Year (Irrigation)	3,840
kL/Year (Potable)	16,061
kL/Year (Non-Potable)	0

¹Total refers to Potable & Non-Potable Water

School Information

Multiple school sizes are possible. Help/Not							
School Type	Students	Area (m ² /School)	Irrigation Area (m ² /School)				
Primary School	300	35,022	14,009				

Water Sources Summary Page (Click) Select possible water sources and meir contribution to Irrigation or Non-Drinking water use. Model only uses water source when check box is ticked. \checkmark **Source Contribution (%)** Select **Non-Drinking** Source **Source(s)** Irrigation 100 **Potable water** 100 **Rainwater*** 0 0 Apply Rainwater to: Groundwater 100 Irrigation **Non-drinking** Greywater **Stormwater Treated wastewater** Other **TOTAL ALTERNATE** 0 0

* Rainwater proportion calculated automatically and split between Irrigation and Non-drinking

Summary Page (Click)

Summary Page (Click)

(Click)

4. POS, Roads & Verges

Please Enter Total POS, Roads & Verges Area 203,157 Total Area (m²): Area Running Total (m²):

203,157 Area Totals Match

Total POS, Roads & Verges Water Use

Per Year Summary	
kL/Year (Total)	45,897
kL/Year (Irrigation)	45,897
kL/Year (Drinking)	0
kL/Year (Non-Drinking)	0
kL/ha/Year (Irrigation)	2,259
kL/Year (Potable)	0
kL/Year (Non-Potable)	45,897

¹Total refers to Potable & Non-Potable Water

POS, Roads & Verges Information Summary Page (Click) Help/Notes (Click)

For Active POS, please estimate the total water use by amenities. E.g. water fountains and shower cubicles.

Public Open Space	Area (m ²)	Amenities (kL/Year)
Active	29,000	
Passive	13,714	
Bushland/Non-Irrigated Areas	13,713	
Roads & Paths	146,730	
Verges		
Street Scaping		

Water Sources

Summary Page (Click)

Select possible water sources and their contribution to Irrigation or Non-Drinkin vater use. Model only uses water sour when check box is ticked.

	Select	Source Co	ntribution (%)	
Source	Source(s)	Irrigation	Non-Drinking ¹	
Potable water		0	100	
Rainwater ²		0	0	Apply Rainwater to:
Groundwater		100		Irrigation
Greywater				Non-drinking
Stormwater				
Treated wastewater				
Other				
TOTAL ALTERNATE		100	0	

¹ Non-Drinking water use for POS amenities.

² Rainwater proportion calculated automatically and split between Irrigation and Non-drinking

Summary Page (Click)

APPENDIX D - Stormwater modelling parameters & results

engineering project management environment

Pre-development surface water modelling

A surface water model of the pre-development conditions of the catchment surrounding Precinct E2 was developed using the 2D module of the XP Storm stormwater modelling software. XP Storm is an urban drainage design software package capable of hydrologic and hydraulic modelling of urban catchments. The 2D module of XP Storm models 2-dimensional flow over a grid, rather than via a series of discrete nodes and links. Topographical data, rainfall information and infiltration losses & catchment roughness parameters are input into the 2D module to determine the runoff generated by the catchment and the flow paths and extent of inundation.

The following sections outline the parameters used in the pre-development modelling.

Design rainfall

The 2D module of XP Storm uses rainfall-on-grid to model stormwater runoff from the catchment. Design storm durations varied between 1 hour & 72 hours, to determine the critical duration event for both 5yr & 100yr ARI, and to size the bioretention areas for the post-development scenario. Design rainfall Intensity Frequency Duration (IFD) data was created using the Bureau of Meteorology's online IFD-generator tool.

The data used for the Mundijong site is presented in Table D.1below.

	Duration						
ARI	Intensity (mm/hr)						
	1 hour	6 hour	12 hour	24 hour	48 hour	72 hour	
1 year	17.3	-	-	-	-	-	
5 year	27.2	8.7	5.6	3.6	2.3	1.7	
100 year	48.1	15.0	9.7	6.3	4.1	3.1	

Table D.1 - IFD design data

Catchment properties

The catchment parameters for the various landuses included in the modelling are outlined in Table D.2 below.

Table D.2 - Land use & infiltration losses

Landuse	Manning's roughness	Initial loss (mm)	Continuing loss (mm/hr)
Existing roads (impervious)	0.015	1.5 mm	0 mm/hr

Landuse	Manning's roughness	Initial loss (mm)	Continuing loss (mm/hr)
Existing urban (pervious)	0.025	10 mm	4 mm/hr
Existing rural (cleared, with sandy soils)	0.05	10 mm	4 mm/hr
Existing rural (cleared, with clay soils)	0.2	5 mm	1.5 mm/hr

Peak flow rates

Table D.3 below summarises the pre-development peak flow rates at various locations across the catchment for the critical 5yr and 100yr ARI storm event. These locations are shown on Figure 2.7.

Table D.3 - Peak pre-development flow rates

Flow location	Peak flow - 5yr 48hr ARI	Peak flow - 100yr 6hr ARI
A - Lot 9003 Adams St - near Tonkin St	1.2 m ³ /s	2.9 m ³ /s
B - Lot 7 Adams St - near Livesey St	0.8 m ³ /s	1.9 m ³ /s
C - Lot 7 Adams St	1.8 m ³ /s	4.6 m ³ /s
D1 - Lot 50 Cockram St - at Sparkman Rd	1.2 m ³ /s	2.1 m ³ /s
D2 - Lot 50 Cockram St - south of Sparkman Rd	1.1 m ³ /s	3.3 m ³ /s
E1 - Lot 119 Sparkman Rd - north-western corner	0.5 m ³ /s	1.4 m ³ /s
E2 - Lot 119 Sparkman Rd - south-western corner	1.5 m ³ /s	3.2 m ³ /s
F - Lot 50 Cockram St - western boundary (main drainage outlet)	3.6 m ³ /s	7.2 m ³ /s
G1 - Lot 50 Cockram St - eastern boundary between Mundijong Rd & Cockram St	1.0 m ³ /s	2.5 m ³ /s
G2 - Lot 50 Cockram St - south-eastern corner, near Mundijong Rd	0.4 m ³ /s	0.9 m ³ /s
H - Lot 50 Cockram St - south-western corner	0.5 m ³ /s	1.8 m ³ /s

Post-development surface water modelling

Post-development stormwater modelling was undertaken using the 'standard' 1D module of XP Storm.

The 1D module uses a standard node & link network to model the hydrology of the urban catchment, and the hydraulic elements such as basins and piped or open drains. The following sections outline the parameters used in the design of the post-development drainage basins and open drains.

Design rainfall

Design storm durations varied between 1 hour & 72 hours, for 1yr, 5yr & 100yr ARI design storms. Design rainfall Intensity Frequency Duration (IFD) data was created using the Bureau of Meteorology's online IFD-generator tool. The data used for the Mundijong site is presented in Table D.1 above.

Catchment properties

The catchment parameters for the various landuses included in the modelling are outlined in Table D.4 & Table D.5 below.

Table D.4	_	Post-developr	ment	land	uses
		i ost acretopi	nene	cana	ases

Post-development landuse	% impervious	Catchment area
Residential lots	30 %	28.0 ha
Road reserve	80 % ¹	14.7 ha
POS	5 %	6.3 ha
Schools	10 %	3.5 ha

Note 1: An impervious fraction of 80% is sufficient to allow for the full pavement width, crossovers, footpaths on both sides of the road, and approximately 25-30% of lots to have fully paved front verges.

Table D.5 - Manning's n & infiltration losses

Landuse	Manning's roughness	Initial loss (mm)	Continuing loss (mm/hr)
Impervious surfaces	0.014	1.5 mm	0 mm/hr
Pervious surfaces	0.03	15 mm	4 mm/hr

Peak allowable flow rates

The post-development modelling has allowed for flow from upstream catchments to the east of the site to pass through the Precinct E2 (at pre-development levels). Flow which overflows into Precinct E2 from the north under predevelopment conditions will be conveyed to the east along Sparkman Road, as noted in the LWMS for Precinct E1 to the north of the site.

The following peak flow rates have been allowed for in the design of the post-development drainage network:

- Location E
 - 5yr ARI Q = $2.0 \text{ m}^3/\text{s}$
 - 100yr ARI Q = $4.6 \text{ m}^3/\text{s}$
- Location G
 - 5yr ARI Q = 1.3 m³/s
 - 100yr ARI Q = $3.4 \text{ m}^3/\text{s}$

The pre-development modelling for the site determined that the peak allowable runoff from Precinct E2 was **1.0 m3/s** and **2.1 m3/s** for the critical 5yr & 100yr ARI events respectively. Based on these flow rates, the storage basins through the site were designed to attenuate post-development runoff to within these allowable levels. The required areas for flood attenuation in the POS areas are shown in Table D.6 below, and also in Figure 5.1.

Table D.6 - Required bioretention & flood storage areas

Basin ref	1yr 1hr ARI bioretention area	5yr ARI flooded area	100yr ARI flooded area
1	370 m ²	1,000 m ²	1,300 m ²
2	540 m ²	1,000 m ²	1,300 m ²
3	1,050 m ²	1,800 m ²	2,300 m ²
4	480 m ²	1,600 m ²	1,900 m ²
5	930 m ²	2,600 m ²	3,100 m ²
6	820 m ²	3,100 m ²	3,900 m ²
7	1,710 m ²	3,400 m ²	3,900 m ²
8	550 m ²	1,000 m ²	2,100 m ²

engineering project management environment

Table D.7 below shows the peak flow rates from each of the basins through the subdivision. These flow rates are within the allowable (pre-development) flow rates outlined in Section 2.5.1 of this LWMS.

Table D.7 - Peak post-development flow rates from flood storage areas

Basin ref	5yr ARI peak outflow	100yr ARI peak outflow
1	0.1 m³/s	0.1 m ³ /s
2	0.1 m ³ /s	0.2 m ³ /s
3	0.3 m³/s	0.5 m³/s
4	0.1 m³/s	0.2 m ³ /s
5	0.1 m³/s	0.3 m ³ /s
6	0.1 m ³ /s	0.3 m ³ /s
7	0.2 m³/s	0.4 m ³ /s
8	0.1 m ³ /s	0.1 m ³ /s
TOTAL	1.0 m³/s	2.1 m ³ /s